1.0.0[−]Primitive Type u16
The 16-bit unsigned integer type.
Methods
impl u16
[src]
pub const fn min_value() -> u16
[src]
Returns the smallest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(u16::min_value(), 0);Run
pub const fn max_value() -> u16
[src]
Returns the largest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(u16::max_value(), 65535);Run
pub fn from_str_radix(src: &str, radix: u32) -> Result<u16, ParseIntError>
[src]
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
sign
followed by digits.
Leading and trailing whitespace represent an error.
Digits are a subset of these characters, depending on radix
:
0-9
a-z
A-Z
Panics
This function panics if radix
is not in the range from 2 to 36.
Examples
Basic usage:
assert_eq!(u16::from_str_radix("A", 16), Ok(10));Run
pub const fn count_ones(self) -> u32
[src]
Returns the number of ones in the binary representation of self
.
Examples
Basic usage:
let n = 0b01001100u16; assert_eq!(n.count_ones(), 3);Run
pub const fn count_zeros(self) -> u32
[src]
Returns the number of zeros in the binary representation of self
.
Examples
Basic usage:
assert_eq!(u16::max_value().count_zeros(), 0);Run
pub const fn leading_zeros(self) -> u32
[src]
Returns the number of leading zeros in the binary representation of self
.
Examples
Basic usage:
let n = u16::max_value() >> 2; assert_eq!(n.leading_zeros(), 2);Run
pub const fn trailing_zeros(self) -> u32
[src]
Returns the number of trailing zeros in the binary representation
of self
.
Examples
Basic usage:
let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn rotate_left(self, n: u32) -> u16
[src]
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Please note this isn't the same operation as the <<
shifting operator!
Examples
Basic usage:
let n = 0xa003u16; let m = 0x3a; assert_eq!(n.rotate_left(4), m);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn rotate_right(self, n: u32) -> u16
[src]
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn't the same operation as the >>
shifting operator!
Examples
Basic usage:
let n = 0x3au16; let m = 0xa003; assert_eq!(n.rotate_right(4), m);Run
pub const fn swap_bytes(self) -> u16
[src]
Reverses the byte order of the integer.
Examples
Basic usage:
let n = 0x1234u16; let m = n.swap_bytes(); assert_eq!(m, 0x3412);Run
#[must_use]
pub const fn reverse_bits(self) -> u16
1.37.0[src]
Reverses the bit pattern of the integer.
Examples
Basic usage:
let n = 0x1234u16; let m = n.reverse_bits(); assert_eq!(m, 0x2c48);Run
pub const fn from_be(x: u16) -> u16
[src]
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au16; if cfg!(target_endian = "big") { assert_eq!(u16::from_be(n), n) } else { assert_eq!(u16::from_be(n), n.swap_bytes()) }Run
pub const fn from_le(x: u16) -> u16
[src]
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au16; if cfg!(target_endian = "little") { assert_eq!(u16::from_le(n), n) } else { assert_eq!(u16::from_le(n), n.swap_bytes()) }Run
pub const fn to_be(self) -> u16
[src]
Converts self
to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au16; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }Run
pub const fn to_le(self) -> u16
[src]
Converts self
to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au16; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_add(self, rhs: u16) -> Option<u16>
[src]
Checked integer addition. Computes self + rhs
, returning None
if overflow occurred.
Examples
Basic usage:
assert_eq!((u16::max_value() - 2).checked_add(1), Some(u16::max_value() - 1)); assert_eq!((u16::max_value() - 2).checked_add(3), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_sub(self, rhs: u16) -> Option<u16>
[src]
Checked integer subtraction. Computes self - rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(1u16.checked_sub(1), Some(0)); assert_eq!(0u16.checked_sub(1), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_mul(self, rhs: u16) -> Option<u16>
[src]
Checked integer multiplication. Computes self * rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(5u16.checked_mul(1), Some(5)); assert_eq!(u16::max_value().checked_mul(2), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_div(self, rhs: u16) -> Option<u16>
[src]
Checked integer division. Computes self / rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(128u16.checked_div(2), Some(64)); assert_eq!(1u16.checked_div(0), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_div_euclid(self, rhs: u16) -> Option<u16>
1.38.0[src]
Checked Euclidean division. Computes self.div_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(128u16.checked_div_euclid(2), Some(64)); assert_eq!(1u16.checked_div_euclid(0), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_rem(self, rhs: u16) -> Option<u16>
1.7.0[src]
Checked integer remainder. Computes self % rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(5u16.checked_rem(2), Some(1)); assert_eq!(5u16.checked_rem(0), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_rem_euclid(self, rhs: u16) -> Option<u16>
1.38.0[src]
Checked Euclidean modulo. Computes self.rem_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(5u16.checked_rem_euclid(2), Some(1)); assert_eq!(5u16.checked_rem_euclid(0), None);Run
pub fn checked_neg(self) -> Option<u16>
1.7.0[src]
Checked negation. Computes -self
, returning None
unless self == 0
.
Note that negating any positive integer will overflow.
Examples
Basic usage:
assert_eq!(0u16.checked_neg(), Some(0)); assert_eq!(1u16.checked_neg(), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_shl(self, rhs: u32) -> Option<u16>
1.7.0[src]
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x1u16.checked_shl(4), Some(0x10)); assert_eq!(0x10u16.checked_shl(129), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_shr(self, rhs: u32) -> Option<u16>
1.7.0[src]
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x10u16.checked_shr(4), Some(0x1)); assert_eq!(0x10u16.checked_shr(129), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn checked_pow(self, exp: u32) -> Option<u16>
1.34.0[src]
Checked exponentiation. Computes self.pow(exp)
, returning None
if
overflow occurred.
Examples
Basic usage:
assert_eq!(2u16.checked_pow(5), Some(32)); assert_eq!(u16::max_value().checked_pow(2), None);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn saturating_add(self, rhs: u16) -> u16
[src]
Saturating integer addition. Computes self + rhs
, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100u16.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn saturating_sub(self, rhs: u16) -> u16
[src]
Saturating integer subtraction. Computes self - rhs
, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100u16.saturating_sub(27), 73); assert_eq!(13u16.saturating_sub(127), 0);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn saturating_mul(self, rhs: u16) -> u16
1.7.0[src]
Saturating integer multiplication. Computes self * rhs
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
use std::u16; assert_eq!(2u16.saturating_mul(10), 20); assert_eq!((u16::MAX).saturating_mul(10), u16::MAX);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn saturating_pow(self, exp: u32) -> u16
1.34.0[src]
Saturating integer exponentiation. Computes self.pow(exp)
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
use std::u16; assert_eq!(4u16.saturating_pow(3), 64); assert_eq!(u16::MAX.saturating_pow(2), u16::MAX);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn wrapping_add(self, rhs: u16) -> u16
[src]
Wrapping (modular) addition. Computes self + rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(200u16.wrapping_add(55), 255); assert_eq!(200u16.wrapping_add(u16::max_value()), 199);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn wrapping_sub(self, rhs: u16) -> u16
[src]
Wrapping (modular) subtraction. Computes self - rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(100u16.wrapping_sub(100), 0); assert_eq!(100u16.wrapping_sub(u16::max_value()), 101);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn wrapping_mul(self, rhs: u16) -> u16
[src]
Wrapping (modular) multiplication. Computes self * rhs
, wrapping around at the boundary of the type.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u8
is used here.
assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn wrapping_div(self, rhs: u16) -> u16
1.2.0[src]
Wrapping (modular) division. Computes self / rhs
.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u16.wrapping_div(10), 10);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn wrapping_div_euclid(self, rhs: u16) -> u16
1.38.0[src]
Wrapping Euclidean division. Computes self.div_euclid(rhs)
.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_div(rhs)
.
Examples
Basic usage:
assert_eq!(100u16.wrapping_div_euclid(10), 10);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn wrapping_rem(self, rhs: u16) -> u16
1.2.0[src]
Wrapping (modular) remainder. Computes self % rhs
.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u16.wrapping_rem(10), 0);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn wrapping_rem_euclid(self, rhs: u16) -> u16
1.38.0[src]
Wrapping Euclidean modulo. Computes self.rem_euclid(rhs)
.
Wrapped modulo calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_rem(rhs)
.
Examples
Basic usage:
assert_eq!(100u16.wrapping_rem_euclid(10), 0);Run
pub const fn wrapping_neg(self) -> u16
1.2.0[src]
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for -0
).
For values smaller than the corresponding signed type's maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to MAX + 1 - (val - MAX - 1)
where
MAX
is the corresponding signed type's maximum.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why i8
is used here.
assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn wrapping_shl(self, rhs: u32) -> u16
1.2.0[src]
Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function, which may
be what you want instead.
Examples
Basic usage:
assert_eq!(1u16.wrapping_shl(7), 128); assert_eq!(1u16.wrapping_shl(128), 1);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn wrapping_shr(self, rhs: u32) -> u16
1.2.0[src]
Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function, which may
be what you want instead.
Examples
Basic usage:
assert_eq!(128u16.wrapping_shr(7), 1); assert_eq!(128u16.wrapping_shr(128), 128);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn wrapping_pow(self, exp: u32) -> u16
1.34.0[src]
Wrapping (modular) exponentiation. Computes self.pow(exp)
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(3u16.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn overflowing_add(self, rhs: u16) -> (u16, bool)
1.7.0[src]
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
use std::u16; assert_eq!(5u16.overflowing_add(2), (7, false)); assert_eq!(u16::MAX.overflowing_add(1), (0, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn overflowing_sub(self, rhs: u16) -> (u16, bool)
1.7.0[src]
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
use std::u16; assert_eq!(5u16.overflowing_sub(2), (3, false)); assert_eq!(0u16.overflowing_sub(1), (u16::MAX, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn overflowing_mul(self, rhs: u16) -> (u16, bool)
1.7.0[src]
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn overflowing_div(self, rhs: u16) -> (u16, bool)
1.7.0[src]
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u16.overflowing_div(2), (2, false));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn overflowing_div_euclid(self, rhs: u16) -> (u16, bool)
1.38.0[src]
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.overflowing_div(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u16.overflowing_div_euclid(2), (2, false));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn overflowing_rem(self, rhs: u16) -> (u16, bool)
1.7.0[src]
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u16.overflowing_rem(2), (1, false));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn overflowing_rem_euclid(self, rhs: u16) -> (u16, bool)
1.38.0[src]
Calculates the remainder self.rem_euclid(rhs)
as if by Euclidean division.
Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Since, for the positive integers, all common
definitions of division are equal, this operation
is exactly equal to self.overflowing_rem(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u16.overflowing_rem_euclid(2), (1, false));Run
pub const fn overflowing_neg(self) -> (u16, bool)
1.7.0[src]
Negates self in an overflowing fashion.
Returns !self + 1
using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.
Examples
Basic usage
assert_eq!(0u16.overflowing_neg(), (0, false)); assert_eq!(2u16.overflowing_neg(), (-2i32 as u16, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn overflowing_shl(self, rhs: u32) -> (u16, bool)
1.7.0[src]
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x1u16.overflowing_shl(4), (0x10, false)); assert_eq!(0x1u16.overflowing_shl(132), (0x10, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub const fn overflowing_shr(self, rhs: u32) -> (u16, bool)
1.7.0[src]
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x10u16.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u16.overflowing_shr(132), (0x1, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn overflowing_pow(self, exp: u32) -> (u16, bool)
1.34.0[src]
Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
Examples
Basic usage:
assert_eq!(3u16.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn pow(self, exp: u32) -> u16
[src]
Raises self to the power of exp
, using exponentiation by squaring.
Examples
Basic usage:
assert_eq!(2u16.pow(5), 32);Run
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn div_euclid(self, rhs: u16) -> u16
1.38.0[src]
Performs Euclidean division.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self / rhs
.
Examples
Basic usage:
assert_eq!(7u16.div_euclid(4), 1); // or any other integer typeRun
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn rem_euclid(self, rhs: u16) -> u16
1.38.0[src]
Calculates the least remainder of self (mod rhs)
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self % rhs
.
Examples
Basic usage:
assert_eq!(7u16.rem_euclid(4), 3); // or any other integer typeRun
pub fn is_power_of_two(self) -> bool
[src]
Returns true
if and only if self == 2^k
for some k
.
Examples
Basic usage:
assert!(16u16.is_power_of_two()); assert!(!10u16.is_power_of_two());Run
pub fn next_power_of_two(self) -> u16
[src]
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), it panics in debug mode and return value is wrapped to 0 in
release mode (the only situation in which method can return 0).
Examples
Basic usage:
assert_eq!(2u16.next_power_of_two(), 2); assert_eq!(3u16.next_power_of_two(), 4);Run
pub fn checked_next_power_of_two(self) -> Option<u16>
[src]
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type's maximum value,
None
is returned, otherwise the power of two is wrapped in Some
.
Examples
Basic usage:
assert_eq!(2u16.checked_next_power_of_two(), Some(2)); assert_eq!(3u16.checked_next_power_of_two(), Some(4)); assert_eq!(u16::max_value().checked_next_power_of_two(), None);Run
pub fn wrapping_next_power_of_two(self) -> u16
[src]
🔬 This is a nightly-only experimental API. (wrapping_next_power_of_two
#32463)
needs decision on wrapping behaviour
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type's maximum value,
the return value is wrapped to 0
.
Examples
Basic usage:
#![feature(wrapping_next_power_of_two)] assert_eq!(2u16.wrapping_next_power_of_two(), 2); assert_eq!(3u16.wrapping_next_power_of_two(), 4); assert_eq!(u16::max_value().wrapping_next_power_of_two(), 0);Run
pub fn to_be_bytes(self) -> [u8; 2]
1.32.0[src]
Return the memory representation of this integer as a byte array in big-endian (network) byte order.
Examples
let bytes = 0x1234u16.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34]);Run
pub fn to_le_bytes(self) -> [u8; 2]
1.32.0[src]
Return the memory representation of this integer as a byte array in little-endian byte order.
Examples
let bytes = 0x1234u16.to_le_bytes(); assert_eq!(bytes, [0x34, 0x12]);Run
pub fn to_ne_bytes(self) -> [u8; 2]
1.32.0[src]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform's native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Examples
let bytes = 0x1234u16.to_ne_bytes(); assert_eq!(bytes, if cfg!(target_endian = "big") { [0x12, 0x34] } else { [0x34, 0x12] });Run
pub fn from_be_bytes(bytes: [u8; 2]) -> u16
1.32.0[src]
Create an integer value from its representation as a byte array in big endian.
Examples
let value = u16::from_be_bytes([0x12, 0x34]); assert_eq!(value, 0x1234);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_u16(input: &mut &[u8]) -> u16 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u16>()); *input = rest; u16::from_be_bytes(int_bytes.try_into().unwrap()) }Run
pub fn from_le_bytes(bytes: [u8; 2]) -> u16
1.32.0[src]
Create an integer value from its representation as a byte array in little endian.
Examples
let value = u16::from_le_bytes([0x34, 0x12]); assert_eq!(value, 0x1234);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_le_u16(input: &mut &[u8]) -> u16 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u16>()); *input = rest; u16::from_le_bytes(int_bytes.try_into().unwrap()) }Run
pub fn from_ne_bytes(bytes: [u8; 2]) -> u16
1.32.0[src]
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform's native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = u16::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34] } else { [0x34, 0x12] }); assert_eq!(value, 0x1234);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_ne_u16(input: &mut &[u8]) -> u16 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u16>()); *input = rest; u16::from_ne_bytes(int_bytes.try_into().unwrap()) }Run
Trait Implementations
impl<'_> BitOr<&'_ u16> for u16
[src]
type Output = <u16 as BitOr<u16>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &u16) -> <u16 as BitOr<u16>>::Output
[src]
impl<'a> BitOr<u16> for &'a u16
[src]
type Output = <u16 as BitOr<u16>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: u16) -> <u16 as BitOr<u16>>::Output
[src]
impl BitOr<u16> for u16
[src]
type Output = u16
The resulting type after applying the |
operator.
fn bitor(self, rhs: u16) -> u16
[src]
impl<'_, '_> BitOr<&'_ u16> for &'_ u16
[src]
type Output = <u16 as BitOr<u16>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &u16) -> <u16 as BitOr<u16>>::Output
[src]
impl DivAssign<u16> for u16
1.8.0[src]
fn div_assign(&mut self, other: u16)
[src]
impl<'_> DivAssign<&'_ u16> for u16
1.22.0[src]
fn div_assign(&mut self, other: &u16)
[src]
impl<'_> AddAssign<&'_ u16> for u16
1.22.0[src]
fn add_assign(&mut self, other: &u16)
[src]
impl AddAssign<u16> for u16
1.8.0[src]
fn add_assign(&mut self, other: u16)
[src]
impl Rem<u16> for u16
[src]
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
type Output = u16
The resulting type after applying the %
operator.
fn rem(self, other: u16) -> u16
[src]
impl<'_> Rem<&'_ u16> for u16
[src]
type Output = <u16 as Rem<u16>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &u16) -> <u16 as Rem<u16>>::Output
[src]
impl<'_, '_> Rem<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Rem<u16>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &u16) -> <u16 as Rem<u16>>::Output
[src]
impl<'a> Rem<u16> for &'a u16
[src]
type Output = <u16 as Rem<u16>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: u16) -> <u16 as Rem<u16>>::Output
[src]
impl<'_, '_> Div<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Div<u16>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &u16) -> <u16 as Div<u16>>::Output
[src]
impl<'a> Div<u16> for &'a u16
[src]
type Output = <u16 as Div<u16>>::Output
The resulting type after applying the /
operator.
fn div(self, other: u16) -> <u16 as Div<u16>>::Output
[src]
impl<'_> Div<&'_ u16> for u16
[src]
type Output = <u16 as Div<u16>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &u16) -> <u16 as Div<u16>>::Output
[src]
impl Div<u16> for u16
[src]
This operation rounds towards zero, truncating any fractional part of the exact result.
type Output = u16
The resulting type after applying the /
operator.
fn div(self, other: u16) -> u16
[src]
impl LowerHex for u16
[src]
impl Display for u16
[src]
impl<'a> BitAnd<u16> for &'a u16
[src]
type Output = <u16 as BitAnd<u16>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: u16) -> <u16 as BitAnd<u16>>::Output
[src]
impl<'_, '_> BitAnd<&'_ u16> for &'_ u16
[src]
type Output = <u16 as BitAnd<u16>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &u16) -> <u16 as BitAnd<u16>>::Output
[src]
impl BitAnd<u16> for u16
[src]
type Output = u16
The resulting type after applying the &
operator.
fn bitand(self, rhs: u16) -> u16
[src]
impl<'_> BitAnd<&'_ u16> for u16
[src]
type Output = <u16 as BitAnd<u16>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &u16) -> <u16 as BitAnd<u16>>::Output
[src]
impl Sum<u16> for u16
1.12.0[src]
impl<'a> Sum<&'a u16> for u16
1.12.0[src]
impl BitOrAssign<u16> for u16
1.8.0[src]
fn bitor_assign(&mut self, other: u16)
[src]
impl<'_> BitOrAssign<&'_ u16> for u16
1.22.0[src]
fn bitor_assign(&mut self, other: &u16)
[src]
impl<'_, '_> Mul<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Mul<u16>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &u16) -> <u16 as Mul<u16>>::Output
[src]
impl<'a> Mul<u16> for &'a u16
[src]
type Output = <u16 as Mul<u16>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: u16) -> <u16 as Mul<u16>>::Output
[src]
impl<'_> Mul<&'_ u16> for u16
[src]
type Output = <u16 as Mul<u16>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &u16) -> <u16 as Mul<u16>>::Output
[src]
impl Mul<u16> for u16
[src]
type Output = u16
The resulting type after applying the *
operator.
fn mul(self, other: u16) -> u16
[src]
impl Eq for u16
[src]
impl Debug for u16
[src]
impl MulAssign<u16> for u16
1.8.0[src]
fn mul_assign(&mut self, other: u16)
[src]
impl<'_> MulAssign<&'_ u16> for u16
1.22.0[src]
fn mul_assign(&mut self, other: &u16)
[src]
impl ShrAssign<u32> for u16
1.8.0[src]
fn shr_assign(&mut self, other: u32)
[src]
impl<'_> ShrAssign<&'_ i32> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &i32)
[src]
impl ShrAssign<u8> for u16
1.8.0[src]
fn shr_assign(&mut self, other: u8)
[src]
impl ShrAssign<usize> for u16
1.8.0[src]
fn shr_assign(&mut self, other: usize)
[src]
impl<'_> ShrAssign<&'_ u128> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &u128)
[src]
impl ShrAssign<i128> for u16
1.8.0[src]
fn shr_assign(&mut self, other: i128)
[src]
impl<'_> ShrAssign<&'_ i8> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &i8)
[src]
impl ShrAssign<i64> for u16
1.8.0[src]
fn shr_assign(&mut self, other: i64)
[src]
impl<'_> ShrAssign<&'_ u32> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &u32)
[src]
impl<'_> ShrAssign<&'_ usize> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &usize)
[src]
impl ShrAssign<isize> for u16
1.8.0[src]
fn shr_assign(&mut self, other: isize)
[src]
impl ShrAssign<i8> for u16
1.8.0[src]
fn shr_assign(&mut self, other: i8)
[src]
impl<'_> ShrAssign<&'_ u8> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &u8)
[src]
impl<'_> ShrAssign<&'_ i16> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &i16)
[src]
impl ShrAssign<u128> for u16
1.8.0[src]
fn shr_assign(&mut self, other: u128)
[src]
impl<'_> ShrAssign<&'_ i64> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &i64)
[src]
impl<'_> ShrAssign<&'_ i128> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &i128)
[src]
impl ShrAssign<u16> for u16
1.8.0[src]
fn shr_assign(&mut self, other: u16)
[src]
impl ShrAssign<i16> for u16
1.8.0[src]
fn shr_assign(&mut self, other: i16)
[src]
impl<'_> ShrAssign<&'_ isize> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &isize)
[src]
impl<'_> ShrAssign<&'_ u64> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &u64)
[src]
impl<'_> ShrAssign<&'_ u16> for u16
1.22.0[src]
fn shr_assign(&mut self, other: &u16)
[src]
impl ShrAssign<u64> for u16
1.8.0[src]
fn shr_assign(&mut self, other: u64)
[src]
impl ShrAssign<i32> for u16
1.8.0[src]
fn shr_assign(&mut self, other: i32)
[src]
impl UpperHex for u16
[src]
impl Step for u16
[src]
fn steps_between(start: &u16, end: &u16) -> Option<usize>
[src]
fn add_usize(&self, n: usize) -> Option<u16>
[src]
fn sub_usize(&self, n: usize) -> Option<u16>
[src]
fn replace_one(&mut self) -> u16
[src]
fn replace_zero(&mut self) -> u16
[src]
fn add_one(&self) -> u16
[src]
fn sub_one(&self) -> u16
[src]
impl<'_, '_> Sub<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Sub<u16>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &u16) -> <u16 as Sub<u16>>::Output
[src]
impl<'a> Sub<u16> for &'a u16
[src]
type Output = <u16 as Sub<u16>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: u16) -> <u16 as Sub<u16>>::Output
[src]
impl Sub<u16> for u16
[src]
type Output = u16
The resulting type after applying the -
operator.
fn sub(self, other: u16) -> u16
[src]
impl<'_> Sub<&'_ u16> for u16
[src]
type Output = <u16 as Sub<u16>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &u16) -> <u16 as Sub<u16>>::Output
[src]
impl Not for u16
[src]
impl<'_> Not for &'_ u16
[src]
type Output = <u16 as Not>::Output
The resulting type after applying the !
operator.
fn not(self) -> <u16 as Not>::Output
[src]
impl PartialEq<u16> for u16
[src]
impl FromStr for u16
[src]
type Err = ParseIntError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<u16, ParseIntError>
[src]
impl Octal for u16
[src]
impl ShlAssign<i8> for u16
1.8.0[src]
fn shl_assign(&mut self, other: i8)
[src]
impl<'_> ShlAssign<&'_ i128> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &i128)
[src]
impl<'_> ShlAssign<&'_ i64> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &i64)
[src]
impl<'_> ShlAssign<&'_ isize> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &isize)
[src]
impl ShlAssign<isize> for u16
1.8.0[src]
fn shl_assign(&mut self, other: isize)
[src]
impl<'_> ShlAssign<&'_ i8> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &i8)
[src]
impl ShlAssign<u16> for u16
1.8.0[src]
fn shl_assign(&mut self, other: u16)
[src]
impl ShlAssign<u8> for u16
1.8.0[src]
fn shl_assign(&mut self, other: u8)
[src]
impl<'_> ShlAssign<&'_ i32> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &i32)
[src]
impl ShlAssign<i32> for u16
1.8.0[src]
fn shl_assign(&mut self, other: i32)
[src]
impl<'_> ShlAssign<&'_ u16> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &u16)
[src]
impl<'_> ShlAssign<&'_ i16> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &i16)
[src]
impl<'_> ShlAssign<&'_ usize> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &usize)
[src]
impl ShlAssign<i16> for u16
1.8.0[src]
fn shl_assign(&mut self, other: i16)
[src]
impl<'_> ShlAssign<&'_ u32> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &u32)
[src]
impl<'_> ShlAssign<&'_ u64> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &u64)
[src]
impl<'_> ShlAssign<&'_ u8> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &u8)
[src]
impl ShlAssign<u64> for u16
1.8.0[src]
fn shl_assign(&mut self, other: u64)
[src]
impl ShlAssign<i64> for u16
1.8.0[src]
fn shl_assign(&mut self, other: i64)
[src]
impl ShlAssign<i128> for u16
1.8.0[src]
fn shl_assign(&mut self, other: i128)
[src]
impl ShlAssign<usize> for u16
1.8.0[src]
fn shl_assign(&mut self, other: usize)
[src]
impl ShlAssign<u32> for u16
1.8.0[src]
fn shl_assign(&mut self, other: u32)
[src]
impl ShlAssign<u128> for u16
1.8.0[src]
fn shl_assign(&mut self, other: u128)
[src]
impl<'_> ShlAssign<&'_ u128> for u16
1.22.0[src]
fn shl_assign(&mut self, other: &u128)
[src]
impl PartialOrd<u16> for u16
[src]
fn partial_cmp(&self, other: &u16) -> Option<Ordering>
[src]
fn lt(&self, other: &u16) -> bool
[src]
fn le(&self, other: &u16) -> bool
[src]
fn ge(&self, other: &u16) -> bool
[src]
fn gt(&self, other: &u16) -> bool
[src]
impl BitAndAssign<u16> for u16
1.8.0[src]
fn bitand_assign(&mut self, other: u16)
[src]
impl<'_> BitAndAssign<&'_ u16> for u16
1.22.0[src]
fn bitand_assign(&mut self, other: &u16)
[src]
impl Hash for u16
[src]
fn hash<H>(&self, state: &mut H) where
H: Hasher,
[src]
H: Hasher,
fn hash_slice<H>(data: &[u16], state: &mut H) where
H: Hasher,
[src]
H: Hasher,
impl Shl<u128> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> u16
[src]
impl<'_, '_> Shl<&'_ i32> for &'_ u16
[src]
type Output = <u16 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i32) -> <u16 as Shl<i32>>::Output
[src]
impl<'_, '_> Shl<&'_ u8> for &'_ u16
[src]
type Output = <u16 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u8) -> <u16 as Shl<u8>>::Output
[src]
impl Shl<u8> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> u16
[src]
impl<'a> Shl<i64> for &'a u16
[src]
type Output = <u16 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> <u16 as Shl<i64>>::Output
[src]
impl<'_, '_> Shl<&'_ i16> for &'_ u16
[src]
type Output = <u16 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i16) -> <u16 as Shl<i16>>::Output
[src]
impl<'_, '_> Shl<&'_ u32> for &'_ u16
[src]
type Output = <u16 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u32) -> <u16 as Shl<u32>>::Output
[src]
impl<'a> Shl<u16> for &'a u16
[src]
type Output = <u16 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> <u16 as Shl<u16>>::Output
[src]
impl<'_, '_> Shl<&'_ i64> for &'_ u16
[src]
type Output = <u16 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i64) -> <u16 as Shl<i64>>::Output
[src]
impl Shl<usize> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> u16
[src]
impl<'_> Shl<&'_ u32> for u16
[src]
type Output = <u16 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u32) -> <u16 as Shl<u32>>::Output
[src]
impl<'_> Shl<&'_ u8> for u16
[src]
type Output = <u16 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u8) -> <u16 as Shl<u8>>::Output
[src]
impl<'a> Shl<isize> for &'a u16
[src]
type Output = <u16 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> <u16 as Shl<isize>>::Output
[src]
impl<'a> Shl<i8> for &'a u16
[src]
type Output = <u16 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> <u16 as Shl<i8>>::Output
[src]
impl<'_, '_> Shl<&'_ u128> for &'_ u16
[src]
type Output = <u16 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u128) -> <u16 as Shl<u128>>::Output
[src]
impl<'a> Shl<usize> for &'a u16
[src]
type Output = <u16 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> <u16 as Shl<usize>>::Output
[src]
impl Shl<u64> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> u16
[src]
impl Shl<i64> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> u16
[src]
impl<'_> Shl<&'_ u128> for u16
[src]
type Output = <u16 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u128) -> <u16 as Shl<u128>>::Output
[src]
impl<'a> Shl<u8> for &'a u16
[src]
type Output = <u16 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> <u16 as Shl<u8>>::Output
[src]
impl Shl<i16> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> u16
[src]
impl<'_> Shl<&'_ i16> for u16
[src]
type Output = <u16 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i16) -> <u16 as Shl<i16>>::Output
[src]
impl<'a> Shl<u128> for &'a u16
[src]
type Output = <u16 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> <u16 as Shl<u128>>::Output
[src]
impl Shl<isize> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> u16
[src]
impl<'_> Shl<&'_ i8> for u16
[src]
type Output = <u16 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i8) -> <u16 as Shl<i8>>::Output
[src]
impl<'a> Shl<i16> for &'a u16
[src]
type Output = <u16 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> <u16 as Shl<i16>>::Output
[src]
impl<'_> Shl<&'_ u64> for u16
[src]
type Output = <u16 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u64) -> <u16 as Shl<u64>>::Output
[src]
impl Shl<u16> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> u16
[src]
impl<'_, '_> Shl<&'_ u64> for &'_ u16
[src]
type Output = <u16 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u64) -> <u16 as Shl<u64>>::Output
[src]
impl Shl<u32> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> u16
[src]
impl Shl<i128> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> u16
[src]
impl<'a> Shl<i128> for &'a u16
[src]
type Output = <u16 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> <u16 as Shl<i128>>::Output
[src]
impl<'_> Shl<&'_ isize> for u16
[src]
type Output = <u16 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &isize) -> <u16 as Shl<isize>>::Output
[src]
impl<'a> Shl<i32> for &'a u16
[src]
type Output = <u16 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> <u16 as Shl<i32>>::Output
[src]
impl<'_> Shl<&'_ i128> for u16
[src]
type Output = <u16 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i128) -> <u16 as Shl<i128>>::Output
[src]
impl Shl<i8> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> u16
[src]
impl<'_> Shl<&'_ u16> for u16
[src]
type Output = <u16 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u16) -> <u16 as Shl<u16>>::Output
[src]
impl Shl<i32> for u16
[src]
type Output = u16
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> u16
[src]
impl<'a> Shl<u64> for &'a u16
[src]
type Output = <u16 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> <u16 as Shl<u64>>::Output
[src]
impl<'_> Shl<&'_ i64> for u16
[src]
type Output = <u16 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i64) -> <u16 as Shl<i64>>::Output
[src]
impl<'_> Shl<&'_ i32> for u16
[src]
type Output = <u16 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i32) -> <u16 as Shl<i32>>::Output
[src]
impl<'_, '_> Shl<&'_ i8> for &'_ u16
[src]
type Output = <u16 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i8) -> <u16 as Shl<i8>>::Output
[src]
impl<'_, '_> Shl<&'_ i128> for &'_ u16
[src]
type Output = <u16 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &i128) -> <u16 as Shl<i128>>::Output
[src]
impl<'_> Shl<&'_ usize> for u16
[src]
type Output = <u16 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &usize) -> <u16 as Shl<usize>>::Output
[src]
impl<'_, '_> Shl<&'_ isize> for &'_ u16
[src]
type Output = <u16 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &isize) -> <u16 as Shl<isize>>::Output
[src]
impl<'_, '_> Shl<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &u16) -> <u16 as Shl<u16>>::Output
[src]
impl<'a> Shl<u32> for &'a u16
[src]
type Output = <u16 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> <u16 as Shl<u32>>::Output
[src]
impl<'_, '_> Shl<&'_ usize> for &'_ u16
[src]
type Output = <u16 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &usize) -> <u16 as Shl<usize>>::Output
[src]
impl<'_> Shr<&'_ u128> for u16
[src]
type Output = <u16 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u128) -> <u16 as Shr<u128>>::Output
[src]
impl<'_> Shr<&'_ isize> for u16
[src]
type Output = <u16 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &isize) -> <u16 as Shr<isize>>::Output
[src]
impl Shr<u32> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> u16
[src]
impl<'_> Shr<&'_ i16> for u16
[src]
type Output = <u16 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i16) -> <u16 as Shr<i16>>::Output
[src]
impl<'a> Shr<i32> for &'a u16
[src]
type Output = <u16 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> <u16 as Shr<i32>>::Output
[src]
impl Shr<isize> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> u16
[src]
impl<'_, '_> Shr<&'_ i8> for &'_ u16
[src]
type Output = <u16 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i8) -> <u16 as Shr<i8>>::Output
[src]
impl<'a> Shr<usize> for &'a u16
[src]
type Output = <u16 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> <u16 as Shr<usize>>::Output
[src]
impl<'_> Shr<&'_ i8> for u16
[src]
type Output = <u16 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i8) -> <u16 as Shr<i8>>::Output
[src]
impl Shr<i16> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> u16
[src]
impl<'a> Shr<i64> for &'a u16
[src]
type Output = <u16 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> <u16 as Shr<i64>>::Output
[src]
impl Shr<i32> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> u16
[src]
impl<'_> Shr<&'_ usize> for u16
[src]
type Output = <u16 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &usize) -> <u16 as Shr<usize>>::Output
[src]
impl<'_, '_> Shr<&'_ isize> for &'_ u16
[src]
type Output = <u16 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &isize) -> <u16 as Shr<isize>>::Output
[src]
impl<'_, '_> Shr<&'_ u8> for &'_ u16
[src]
type Output = <u16 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u8) -> <u16 as Shr<u8>>::Output
[src]
impl Shr<i64> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> u16
[src]
impl<'_, '_> Shr<&'_ u64> for &'_ u16
[src]
type Output = <u16 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u64) -> <u16 as Shr<u64>>::Output
[src]
impl<'_> Shr<&'_ u16> for u16
[src]
type Output = <u16 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u16) -> <u16 as Shr<u16>>::Output
[src]
impl<'a> Shr<u128> for &'a u16
[src]
type Output = <u16 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> <u16 as Shr<u128>>::Output
[src]
impl<'a> Shr<i16> for &'a u16
[src]
type Output = <u16 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> <u16 as Shr<i16>>::Output
[src]
impl<'a> Shr<isize> for &'a u16
[src]
type Output = <u16 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> <u16 as Shr<isize>>::Output
[src]
impl Shr<u8> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> u16
[src]
impl<'a> Shr<u8> for &'a u16
[src]
type Output = <u16 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> <u16 as Shr<u8>>::Output
[src]
impl<'_, '_> Shr<&'_ u128> for &'_ u16
[src]
type Output = <u16 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u128) -> <u16 as Shr<u128>>::Output
[src]
impl Shr<u16> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> u16
[src]
impl<'_> Shr<&'_ i32> for u16
[src]
type Output = <u16 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i32) -> <u16 as Shr<i32>>::Output
[src]
impl<'a> Shr<i128> for &'a u16
[src]
type Output = <u16 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> <u16 as Shr<i128>>::Output
[src]
impl<'a> Shr<u16> for &'a u16
[src]
type Output = <u16 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> <u16 as Shr<u16>>::Output
[src]
impl<'_, '_> Shr<&'_ i32> for &'_ u16
[src]
type Output = <u16 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i32) -> <u16 as Shr<i32>>::Output
[src]
impl<'_, '_> Shr<&'_ i64> for &'_ u16
[src]
type Output = <u16 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i64) -> <u16 as Shr<i64>>::Output
[src]
impl<'_> Shr<&'_ u64> for u16
[src]
type Output = <u16 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u64) -> <u16 as Shr<u64>>::Output
[src]
impl<'_, '_> Shr<&'_ i128> for &'_ u16
[src]
type Output = <u16 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i128) -> <u16 as Shr<i128>>::Output
[src]
impl Shr<i8> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> u16
[src]
impl<'_> Shr<&'_ i128> for u16
[src]
type Output = <u16 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i128) -> <u16 as Shr<i128>>::Output
[src]
impl Shr<usize> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> u16
[src]
impl<'_, '_> Shr<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u16) -> <u16 as Shr<u16>>::Output
[src]
impl Shr<u128> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> u16
[src]
impl<'_> Shr<&'_ u32> for u16
[src]
type Output = <u16 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u32) -> <u16 as Shr<u32>>::Output
[src]
impl<'a> Shr<u32> for &'a u16
[src]
type Output = <u16 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> <u16 as Shr<u32>>::Output
[src]
impl<'_> Shr<&'_ u8> for u16
[src]
type Output = <u16 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u8) -> <u16 as Shr<u8>>::Output
[src]
impl Shr<u64> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> u16
[src]
impl<'_, '_> Shr<&'_ u32> for &'_ u16
[src]
type Output = <u16 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &u32) -> <u16 as Shr<u32>>::Output
[src]
impl<'_> Shr<&'_ i64> for u16
[src]
type Output = <u16 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i64) -> <u16 as Shr<i64>>::Output
[src]
impl<'a> Shr<u64> for &'a u16
[src]
type Output = <u16 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> <u16 as Shr<u64>>::Output
[src]
impl<'a> Shr<i8> for &'a u16
[src]
type Output = <u16 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> <u16 as Shr<i8>>::Output
[src]
impl<'_, '_> Shr<&'_ i16> for &'_ u16
[src]
type Output = <u16 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &i16) -> <u16 as Shr<i16>>::Output
[src]
impl Shr<i128> for u16
[src]
type Output = u16
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> u16
[src]
impl<'_, '_> Shr<&'_ usize> for &'_ u16
[src]
type Output = <u16 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &usize) -> <u16 as Shr<usize>>::Output
[src]
impl<'_> Add<&'_ u16> for u16
[src]
type Output = <u16 as Add<u16>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &u16) -> <u16 as Add<u16>>::Output
[src]
impl Add<u16> for u16
[src]
type Output = u16
The resulting type after applying the +
operator.
fn add(self, other: u16) -> u16
[src]
impl<'a> Add<u16> for &'a u16
[src]
type Output = <u16 as Add<u16>>::Output
The resulting type after applying the +
operator.
fn add(self, other: u16) -> <u16 as Add<u16>>::Output
[src]
impl<'_, '_> Add<&'_ u16> for &'_ u16
[src]
type Output = <u16 as Add<u16>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &u16) -> <u16 as Add<u16>>::Output
[src]
impl RemAssign<u16> for u16
1.8.0[src]
fn rem_assign(&mut self, other: u16)
[src]
impl<'_> RemAssign<&'_ u16> for u16
1.22.0[src]
fn rem_assign(&mut self, other: &u16)
[src]
impl<'_> SubAssign<&'_ u16> for u16
1.22.0[src]
fn sub_assign(&mut self, other: &u16)
[src]
impl SubAssign<u16> for u16
1.8.0[src]
fn sub_assign(&mut self, other: u16)
[src]
impl From<NonZeroU16> for u16
1.31.0[src]
fn from(nonzero: NonZeroU16) -> u16
[src]
impl From<u8> for u16
1.5.0[src]
Converts u8
to u16
losslessly.
impl From<bool> for u16
1.28.0[src]
Converts a bool
to a u16
. The resulting value is 0
for false
and 1
for true
values.
Examples
assert_eq!(u16::from(true), 1); assert_eq!(u16::from(false), 0);Run
impl Ord for u16
[src]
fn cmp(&self, other: &u16) -> Ordering
[src]
fn max(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
1.21.0[src]
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl<'_> BitXor<&'_ u16> for u16
[src]
type Output = <u16 as BitXor<u16>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &u16) -> <u16 as BitXor<u16>>::Output
[src]
impl BitXor<u16> for u16
[src]
type Output = u16
The resulting type after applying the ^
operator.
fn bitxor(self, other: u16) -> u16
[src]
impl<'_, '_> BitXor<&'_ u16> for &'_ u16
[src]
type Output = <u16 as BitXor<u16>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &u16) -> <u16 as BitXor<u16>>::Output
[src]
impl<'a> BitXor<u16> for &'a u16
[src]
type Output = <u16 as BitXor<u16>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: u16) -> <u16 as BitXor<u16>>::Output
[src]
impl Binary for u16
[src]
impl Clone for u16
[src]
impl TryFrom<u32> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u32) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<usize> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: usize) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i128> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i128) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i64> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i64) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u128> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u128) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i8> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i8) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i32> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i32) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i16> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i16) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<isize> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: isize) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u64> for u16
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u64) -> Result<u16, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl Product<u16> for u16
1.12.0[src]
impl<'a> Product<&'a u16> for u16
1.12.0[src]
impl BitXorAssign<u16> for u16
1.8.0[src]
fn bitxor_assign(&mut self, other: u16)
[src]
impl<'_> BitXorAssign<&'_ u16> for u16
1.22.0[src]
fn bitxor_assign(&mut self, other: &u16)
[src]
impl Default for u16
[src]
impl Copy for u16
[src]
Auto Trait Implementations
impl UnwindSafe for u16
impl RefUnwindSafe for u16
impl Unpin for u16
impl Send for u16
impl Sync for u16
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
ⓘImportant traits for &'_ mut Ffn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,