1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
//! Traits for conversions between types.
//!
//! The traits in this module provide a way to convert from one type to another type.
//! Each trait serves a different purpose:
//!
//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
//! - Implement the [`From`] trait for consuming value-to-value conversions
//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
//!   outside the current crate
//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
//!   but should be implemented when the conversion can fail.
//!
//! The traits in this module are often used as trait bounds for generic functions such that to
//! arguments of multiple types are supported. See the documentation of each trait for examples.
//!
//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
//! blanket implementation in the standard library. Only implement [`Into`] or [`TryInto`]
//! when a conversion to a type outside the current crate is required.
//!
//! # Generic Implementations
//!
//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
//! - [`From`] and [`Into`] are reflexive, which means that all types can
//!   `into` themselves and `from` themselves
//!
//! See each trait for usage examples.
//!
//! [`Into`]: trait.Into.html
//! [`From`]: trait.From.html
//! [`TryFrom`]: trait.TryFrom.html
//! [`TryInto`]: trait.TryInto.html
//! [`AsRef`]: trait.AsRef.html
//! [`AsMut`]: trait.AsMut.html

#![stable(feature = "rust1", since = "1.0.0")]

use crate::fmt;

/// An identity function.
///
/// Two things are important to note about this function:
///
/// - It is not always equivalent to a closure like `|x| x` since the
///   closure may coerce `x` into a different type.
///
/// - It moves the input `x` passed to the function.
///
/// While it might seem strange to have a function that just returns back the
/// input, there are some interesting uses.
///
/// # Examples
///
/// Using `identity` to do nothing among other interesting functions:
///
/// ```rust
/// use std::convert::identity;
///
/// fn manipulation(x: u32) -> u32 {
///     // Let's assume that this function does something interesting.
///     x + 1
/// }
///
/// let _arr = &[identity, manipulation];
/// ```
///
/// Using `identity` to get a function that changes nothing in a conditional:
///
/// ```rust
/// use std::convert::identity;
///
/// # let condition = true;
///
/// # fn manipulation(x: u32) -> u32 { x + 1 }
///
/// let do_stuff = if condition { manipulation } else { identity };
///
/// // do more interesting stuff..
///
/// let _results = do_stuff(42);
/// ```
///
/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
///
/// ```rust
/// use std::convert::identity;
///
/// let iter = vec![Some(1), None, Some(3)].into_iter();
/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
/// assert_eq!(vec![1, 3], filtered);
/// ```
#[stable(feature = "convert_id", since = "1.33.0")]
#[inline]
pub const fn identity<T>(x: T) -> T { x }

/// Used to do a cheap reference-to-reference conversion.
///
/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
/// If you need to do a costly conversion it is better to implement [`From`] with type
/// `&T` or write a custom function.
///
/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in few aspects:
///
/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
///   a reference or a value.
/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for borrowed value are
///   equivalent to those of the owned value. For this reason, if you want to
///   borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// # Generic Implementations
///
/// - `AsRef` auto-dereferences if the inner type is a reference or a mutable
///   reference (e.g.: `foo.as_ref()` will work the same if `foo` has type
///   `&mut Foo` or `&&mut Foo`)
///
/// # Examples
///
/// By using trait bounds we can accept arguments of different types as long as they can be
/// converted to the specified type `T`.
///
/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
/// want to accept all references that can be converted to [`&str`] as an argument.
/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
///
/// [`Option<T>`]: ../../std/option/enum.Option.html
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`Borrow`]: ../../std/borrow/trait.Borrow.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Ord`]: ../../std/cmp/trait.Ord.html
/// [`&str`]: ../../std/primitive.str.html
/// [`String`]: ../../std/string/struct.String.html
///
/// ```
/// fn is_hello<T: AsRef<str>>(s: T) {
///    assert_eq!("hello", s.as_ref());
/// }
///
/// let s = "hello";
/// is_hello(s);
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait AsRef<T: ?Sized> {
    /// Performs the conversion.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn as_ref(&self) -> &T;
}

/// Used to do a cheap mutable-to-mutable reference conversion.
///
/// This trait is similar to [`AsRef`] but used for converting between mutable
/// references. If you need to do a costly conversion it is better to
/// implement [`From`] with type `&mut T` or write a custom function.
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// [`Option<T>`]: ../../std/option/enum.Option.html
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
///
/// # Generic Implementations
///
/// - `AsMut` auto-dereferences if the inner type is a mutable reference
///   (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo`
///   or `&mut &mut Foo`)
///
/// # Examples
///
/// Using `AsMut` as trait bound for a generic function we can accept all mutable references
/// that can be converted to type `&mut T`. Because [`Box<T>`] implements `AsMut<T>` we can
/// write a function `add_one` that takes all arguments that can be converted to `&mut u64`.
/// Because [`Box<T>`] implements `AsMut<T>`, `add_one` accepts arguments of type
/// `&mut Box<u64>` as well:
///
/// ```
/// fn add_one<T: AsMut<u64>>(num: &mut T) {
///     *num.as_mut() += 1;
/// }
///
/// let mut boxed_num = Box::new(0);
/// add_one(&mut boxed_num);
/// assert_eq!(*boxed_num, 1);
/// ```
///
/// [`Box<T>`]: ../../std/boxed/struct.Box.html
#[stable(feature = "rust1", since = "1.0.0")]
pub trait AsMut<T: ?Sized> {
    /// Performs the conversion.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn as_mut(&mut self) -> &mut T;
}

/// A value-to-value conversion that consumes the input value. The
/// opposite of [`From`].
///
/// One should only implement [`Into`] if a conversion to a type outside the current crate is
/// required. Otherwise one should always prefer implementing [`From`] over [`Into`] because
/// implementing [`From`] automatically provides one with a implementation of [`Into`] thanks to
/// the blanket implementation in the standard library. [`From`] cannot do these type of
/// conversions because of Rust's orphaning rules.
///
/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
///
/// # Generic Implementations
///
/// - [`From`]`<T> for U` implies `Into<U> for T`
/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
///
/// # Implementing [`Into`] for conversions to external types
///
/// If the destination type is not part of the current crate
/// then you can't implement [`From`] directly.
/// For example, take this code:
///
/// ```compile_fail
/// struct Wrapper<T>(Vec<T>);
/// impl<T> From<Wrapper<T>> for Vec<T> {
///     fn from(w: Wrapper<T>) -> Vec<T> {
///         w.0
///     }
/// }
/// ```
/// This will fail to compile because we cannot implement a trait for a type
/// if both the trait and the type are not defined by the current crate.
/// This is due to Rust's orphaning rules. To bypass this, you can implement [`Into`] directly:
///
/// ```
/// struct Wrapper<T>(Vec<T>);
/// impl<T> Into<Vec<T>> for Wrapper<T> {
///     fn into(self) -> Vec<T> {
///         self.0
///     }
/// }
/// ```
///
/// It is important to understand that [`Into`] does not provide a [`From`] implementation
/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
/// and then fall back to [`Into`] if [`From`] can't be implemented.
///
/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
/// to ensure that types that only implement [`Into`] can be used as well.
///
/// # Examples
///
/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
///
/// In order to express that we want a generic function to take all arguments that can be
/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
/// For example: The function `is_hello` takes all arguments that can be converted into a
/// [`Vec`]`<`[`u8`]`>`.
///
/// ```
/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
///    let bytes = b"hello".to_vec();
///    assert_eq!(bytes, s.into());
/// }
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
///
/// [`TryInto`]: trait.TryInto.html
/// [`Option<T>`]: ../../std/option/enum.Option.html
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`String`]: ../../std/string/struct.String.html
/// [`From`]: trait.From.html
/// [`Into`]: trait.Into.html
/// [`Vec`]: ../../std/vec/struct.Vec.html
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Into<T>: Sized {
    /// Performs the conversion.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn into(self) -> T;
}

/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
/// [`Into`].
///
/// One should always prefer implementing `From` over [`Into`]
/// because implementing `From` automatically provides one with a implementation of [`Into`]
/// thanks to the blanket implementation in the standard library.
///
/// Only implement [`Into`] if a conversion to a type outside the current crate is required.
/// `From` cannot do these type of conversions because of Rust's orphaning rules.
/// See [`Into`] for more details.
///
/// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function.
/// This way, types that directly implement [`Into`] can be used as arguments as well.
///
/// The `From` is also very useful when performing error handling. When constructing a function
/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
/// The `From` trait simplifies error handling by allowing a function to return a single error type
/// that encapsulate multiple error types. See the "Examples" section and [the book][book] for more
/// details.
///
/// **Note: This trait must not fail**. If the conversion can fail, use [`TryFrom`].
///
/// # Generic Implementations
///
/// - `From<T> for U` implies [`Into`]`<U> for T`
/// - `From` is reflexive, which means that `From<T> for T` is implemented
///
/// # Examples
///
/// [`String`] implements `From<&str>`:
///
/// An explicit conversion from a `&str` to a String is done as follows:
///
/// ```
/// let string = "hello".to_string();
/// let other_string = String::from("hello");
///
/// assert_eq!(string, other_string);
/// ```
///
/// While performing error handling it is often useful to implement `From` for your own error type.
/// By converting underlying error types to our own custom error type that encapsulates the
/// underlying error type, we can return a single error type without losing information on the
/// underlying cause. The '?' operator automatically converts the underlying error type to our
/// custom error type by calling `Into<CliError>::into` which is automatically provided when
/// implementing `From`. The compiler then infers which implementation of `Into` should be used.
///
/// ```
/// use std::fs;
/// use std::io;
/// use std::num;
///
/// enum CliError {
///     IoError(io::Error),
///     ParseError(num::ParseIntError),
/// }
///
/// impl From<io::Error> for CliError {
///     fn from(error: io::Error) -> Self {
///         CliError::IoError(error)
///     }
/// }
///
/// impl From<num::ParseIntError> for CliError {
///     fn from(error: num::ParseIntError) -> Self {
///         CliError::ParseError(error)
///     }
/// }
///
/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
///     let mut contents = fs::read_to_string(&file_name)?;
///     let num: i32 = contents.trim().parse()?;
///     Ok(num)
/// }
/// ```
///
/// [`TryFrom`]: trait.TryFrom.html
/// [`Option<T>`]: ../../std/option/enum.Option.html
/// [`Result<T, E>`]: ../../std/result/enum.Result.html
/// [`String`]: ../../std/string/struct.String.html
/// [`Into`]: trait.Into.html
/// [`from`]: trait.From.html#tymethod.from
/// [book]: ../../book/ch09-00-error-handling.html
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    on(
        all(_Self="&str", T="std::string::String"),
        note="to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
    )
)]
pub trait From<T>: Sized {
    /// Performs the conversion.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from(_: T) -> Self;
}

/// An attempted conversion that consumes `self`, which may or may not be
/// expensive.
///
/// Library authors should usually not directly implement this trait,
/// but should prefer implementing the [`TryFrom`] trait, which offers
/// greater flexibility and provides an equivalent `TryInto`
/// implementation for free, thanks to a blanket implementation in the
/// standard library. For more information on this, see the
/// documentation for [`Into`].
///
/// # Implementing `TryInto`
///
/// This suffers the same restrictions and reasoning as implementing
/// [`Into`], see there for details.
///
/// [`TryFrom`]: trait.TryFrom.html
/// [`Into`]: trait.Into.html
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryInto<T>: Sized {
    /// The type returned in the event of a conversion error.
    #[stable(feature = "try_from", since = "1.34.0")]
    type Error;

    /// Performs the conversion.
    #[stable(feature = "try_from", since = "1.34.0")]
    fn try_into(self) -> Result<T, Self::Error>;
}

/// Simple and safe type conversions that may fail in a controlled
/// way under some circumstances. It is the reciprocal of [`TryInto`].
///
/// This is useful when you are doing a type conversion that may
/// trivially succeed but may also need special handling.
/// For example, there is no way to convert an [`i64`] into an [`i32`]
/// using the [`From`] trait, because an [`i64`] may contain a value
/// that an [`i32`] cannot represent and so the conversion would lose data.
/// This might be handled by truncating the [`i64`] to an [`i32`] (essentially
/// giving the [`i64`]'s value modulo [`i32::MAX`]) or by simply returning
/// [`i32::MAX`], or by some other method.  The [`From`] trait is intended
/// for perfect conversions, so the `TryFrom` trait informs the
/// programmer when a type conversion could go bad and lets them
/// decide how to handle it.
///
/// # Generic Implementations
///
/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
/// is implemented and cannot fail -- the associated `Error` type for
/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
/// equivalent.
///
/// `TryFrom<T>` can be implemented as follows:
///
/// ```
/// use std::convert::TryFrom;
///
/// struct SuperiorThanZero(i32);
///
/// impl TryFrom<i32> for SuperiorThanZero {
///     type Error = &'static str;
///
///     fn try_from(value: i32) -> Result<Self, Self::Error> {
///         if value < 0 {
///             Err("SuperiorThanZero only accepts value superior than zero!")
///         } else {
///             Ok(SuperiorThanZero(value))
///         }
///     }
/// }
/// ```
///
/// # Examples
///
/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
///
/// ```
/// use std::convert::TryFrom;
///
/// let big_number = 1_000_000_000_000i64;
/// // Silently truncates `big_number`, requires detecting
/// // and handling the truncation after the fact.
/// let smaller_number = big_number as i32;
/// assert_eq!(smaller_number, -727379968);
///
/// // Returns an error because `big_number` is too big to
/// // fit in an `i32`.
/// let try_smaller_number = i32::try_from(big_number);
/// assert!(try_smaller_number.is_err());
///
/// // Returns `Ok(3)`.
/// let try_successful_smaller_number = i32::try_from(3);
/// assert!(try_successful_smaller_number.is_ok());
/// ```
///
/// [`try_from`]: trait.TryFrom.html#tymethod.try_from
/// [`TryInto`]: trait.TryInto.html
/// [`i32::MAX`]: ../../std/i32/constant.MAX.html
/// [`!`]: ../../std/primitive.never.html
/// [`Infallible`]: enum.Infallible.html
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryFrom<T>: Sized {
    /// The type returned in the event of a conversion error.
    #[stable(feature = "try_from", since = "1.34.0")]
    type Error;

    /// Performs the conversion.
    #[stable(feature = "try_from", since = "1.34.0")]
    fn try_from(value: T) -> Result<Self, Self::Error>;
}

////////////////////////////////////////////////////////////////////////////////
// GENERIC IMPLS
////////////////////////////////////////////////////////////////////////////////

// As lifts over &
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &T where T: AsRef<U>
{
    fn as_ref(&self) -> &U {
        <T as AsRef<U>>::as_ref(*self)
    }
}

// As lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &mut T where T: AsRef<U>
{
    fn as_ref(&self) -> &U {
        <T as AsRef<U>>::as_ref(*self)
    }
}

// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
// // As lifts over Deref
// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
//     fn as_ref(&self) -> &U {
//         self.deref().as_ref()
//     }
// }

// AsMut lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsMut<U> for &mut T where T: AsMut<U>
{
    fn as_mut(&mut self) -> &mut U {
        (*self).as_mut()
    }
}

// FIXME (#45742): replace the above impl for &mut with the following more general one:
// // AsMut lifts over DerefMut
// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
//     fn as_mut(&mut self) -> &mut U {
//         self.deref_mut().as_mut()
//     }
// }

// From implies Into
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, U> Into<U> for T where U: From<T>
{
    fn into(self) -> U {
        U::from(self)
    }
}

// From (and thus Into) is reflexive
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> From<T> for T {
    fn from(t: T) -> T { t }
}


// TryFrom implies TryInto
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryInto<U> for T where U: TryFrom<T>
{
    type Error = U::Error;

    fn try_into(self) -> Result<U, U::Error> {
        U::try_from(self)
    }
}

// Infallible conversions are semantically equivalent to fallible conversions
// with an uninhabited error type.
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryFrom<U> for T where U: Into<T> {
    type Error = Infallible;

    fn try_from(value: U) -> Result<Self, Self::Error> {
        Ok(U::into(value))
    }
}

////////////////////////////////////////////////////////////////////////////////
// CONCRETE IMPLS
////////////////////////////////////////////////////////////////////////////////

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsRef<[T]> for [T] {
    fn as_ref(&self) -> &[T] {
        self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsMut<[T]> for [T] {
    fn as_mut(&mut self) -> &mut [T] {
        self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<str> for str {
    #[inline]
    fn as_ref(&self) -> &str {
        self
    }
}

////////////////////////////////////////////////////////////////////////////////
// THE NO-ERROR ERROR TYPE
////////////////////////////////////////////////////////////////////////////////

/// The error type for errors that can never happen.
///
/// Since this enum has no variant, a value of this type can never actually exist.
/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
/// to indicate that the result is always [`Ok`].
///
/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
///
/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
/// impl<T, U> TryFrom<U> for T where U: Into<T> {
///     type Error = Infallible;
///
///     fn try_from(value: U) -> Result<Self, Infallible> {
///         Ok(U::into(value))  // Never returns `Err`
///     }
/// }
/// ```
///
/// # Future compatibility
///
/// This enum has the same role as [the `!` “never” type][never],
/// which is unstable in this version of Rust.
/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
///
/// ```ignore (illustrates future std change)
/// pub type Infallible = !;
/// ```
///
/// … and eventually deprecate `Infallible`.
///
///
/// However there is one case where `!` syntax can be used
/// before `!` is stabilized as a full-fleged type: in the position of a function’s return type.
/// Specifically, it is possible implementations for two different function pointer types:
///
/// ```
/// trait MyTrait {}
/// impl MyTrait for fn() -> ! {}
/// impl MyTrait for fn() -> std::convert::Infallible {}
/// ```
///
/// With `Infallible` being an enum, this code is valid.
/// However when `Infallible` becomes an alias for the never type,
/// the two `impl`s will start to overlap
/// and therefore will be disallowed by the language’s trait coherence rules.
///
/// [`Ok`]: ../result/enum.Result.html#variant.Ok
/// [`Result`]: ../result/enum.Result.html
/// [`TryFrom`]: trait.TryFrom.html
/// [`Into`]: trait.Into.html
/// [never]: ../../std/primitive.never.html
#[stable(feature = "convert_infallible", since = "1.34.0")]
#[derive(Copy)]
pub enum Infallible {}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Clone for Infallible {
    fn clone(&self) -> Infallible {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Debug for Infallible {
    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Display for Infallible {
    fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialEq for Infallible {
    fn eq(&self, _: &Infallible) -> bool {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Eq for Infallible {}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialOrd for Infallible {
    fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Ord for Infallible {
    fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
        match *self {}
    }
}

#[stable(feature = "convert_infallible", since = "1.34.0")]
impl From<!> for Infallible {
    fn from(x: !) -> Self {
        x
    }
}