1.0.0[−][src]Struct std::collections::BTreeSet
A set based on a B-Tree.
See BTreeMap
's documentation for a detailed discussion of this collection's performance
benefits and drawbacks.
It is a logic error for an item to be modified in such a way that the item's ordering relative
to any other item, as determined by the Ord
trait, changes while it is in the set. This is
normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
Examples
use std::collections::BTreeSet; // Type inference lets us omit an explicit type signature (which // would be `BTreeSet<&str>` in this example). let mut books = BTreeSet::new(); // Add some books. books.insert("A Dance With Dragons"); books.insert("To Kill a Mockingbird"); books.insert("The Odyssey"); books.insert("The Great Gatsby"); // Check for a specific one. if !books.contains("The Winds of Winter") { println!("We have {} books, but The Winds of Winter ain't one.", books.len()); } // Remove a book. books.remove("The Odyssey"); // Iterate over everything. for book in &books { println!("{}", book); }Run
Methods
impl<T> BTreeSet<T> where
T: Ord,
[src]
T: Ord,
pub fn new() -> BTreeSet<T>
[src]
Makes a new BTreeSet
with a reasonable choice of B.
Examples
use std::collections::BTreeSet; let mut set: BTreeSet<i32> = BTreeSet::new();Run
ⓘImportant traits for Range<'a, T>pub fn range<K, R>(&self, range: R) -> Range<T> where
K: Ord + ?Sized,
R: RangeBounds<K>,
T: Borrow<K>,
1.17.0[src]
K: Ord + ?Sized,
R: RangeBounds<K>,
T: Borrow<K>,
Constructs a double-ended iterator over a sub-range of elements in the set.
The simplest way is to use the range syntax min..max
, thus range(min..max)
will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>)
, so for example
range((Excluded(4), Included(10)))
will yield a left-exclusive, right-inclusive
range from 4 to 10.
Examples
use std::collections::BTreeSet; use std::ops::Bound::Included; let mut set = BTreeSet::new(); set.insert(3); set.insert(5); set.insert(8); for &elem in set.range((Included(&4), Included(&8))) { println!("{}", elem); } assert_eq!(Some(&5), set.range(4..).next());Run
ⓘImportant traits for Difference<'a, T>pub fn difference(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>
[src]
Visits the values representing the difference,
i.e., the values that are in self
but not in other
,
in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let diff: Vec<_> = a.difference(&b).cloned().collect(); assert_eq!(diff, [1]);Run
ⓘImportant traits for SymmetricDifference<'a, T>pub fn symmetric_difference(
&'a self,
other: &'a BTreeSet<T>
) -> SymmetricDifference<'a, T>
[src]
&'a self,
other: &'a BTreeSet<T>
) -> SymmetricDifference<'a, T>
Visits the values representing the symmetric difference,
i.e., the values that are in self
or in other
but not in both,
in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect(); assert_eq!(sym_diff, [1, 3]);Run
ⓘImportant traits for Intersection<'a, T>pub fn intersection(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>
[src]
Visits the values representing the intersection,
i.e., the values that are both in self
and other
,
in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); let mut b = BTreeSet::new(); b.insert(2); b.insert(3); let intersection: Vec<_> = a.intersection(&b).cloned().collect(); assert_eq!(intersection, [2]);Run
ⓘImportant traits for Union<'a, T>pub fn union(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T>
[src]
Visits the values representing the union,
i.e., all the values in self
or other
, without duplicates,
in ascending order.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); let mut b = BTreeSet::new(); b.insert(2); let union: Vec<_> = a.union(&b).cloned().collect(); assert_eq!(union, [1, 2]);Run
pub fn clear(&mut self)
[src]
Clears the set, removing all values.
Examples
use std::collections::BTreeSet; let mut v = BTreeSet::new(); v.insert(1); v.clear(); assert!(v.is_empty());Run
pub fn contains<Q>(&self, value: &Q) -> bool where
Q: Ord + ?Sized,
T: Borrow<Q>,
[src]
Q: Ord + ?Sized,
T: Borrow<Q>,
Returns true
if the set contains a value.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.contains(&1), true); assert_eq!(set.contains(&4), false);Run
pub fn get<Q>(&self, value: &Q) -> Option<&T> where
Q: Ord + ?Sized,
T: Borrow<Q>,
1.9.0[src]
Q: Ord + ?Sized,
T: Borrow<Q>,
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.get(&2), Some(&2)); assert_eq!(set.get(&4), None);Run
pub fn is_disjoint(&self, other: &BTreeSet<T>) -> bool
[src]
Returns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); let mut b = BTreeSet::new(); assert_eq!(a.is_disjoint(&b), true); b.insert(4); assert_eq!(a.is_disjoint(&b), true); b.insert(1); assert_eq!(a.is_disjoint(&b), false);Run
pub fn is_subset(&self, other: &BTreeSet<T>) -> bool
[src]
Returns true
if the set is a subset of another,
i.e., other
contains at least all the values in self
.
Examples
use std::collections::BTreeSet; let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); let mut set = BTreeSet::new(); assert_eq!(set.is_subset(&sup), true); set.insert(2); assert_eq!(set.is_subset(&sup), true); set.insert(4); assert_eq!(set.is_subset(&sup), false);Run
pub fn is_superset(&self, other: &BTreeSet<T>) -> bool
[src]
Returns true
if the set is a superset of another,
i.e., self
contains at least all the values in other
.
Examples
use std::collections::BTreeSet; let sub: BTreeSet<_> = [1, 2].iter().cloned().collect(); let mut set = BTreeSet::new(); assert_eq!(set.is_superset(&sub), false); set.insert(0); set.insert(1); assert_eq!(set.is_superset(&sub), false); set.insert(2); assert_eq!(set.is_superset(&sub), true);Run
pub fn insert(&mut self, value: T) -> bool
[src]
Adds a value to the set.
If the set did not have this value present, true
is returned.
If the set did have this value present, false
is returned, and the
entry is not updated. See the module-level documentation for more.
Examples
use std::collections::BTreeSet; let mut set = BTreeSet::new(); assert_eq!(set.insert(2), true); assert_eq!(set.insert(2), false); assert_eq!(set.len(), 1);Run
pub fn replace(&mut self, value: T) -> Option<T>
1.9.0[src]
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
Examples
use std::collections::BTreeSet; let mut set = BTreeSet::new(); set.insert(Vec::<i32>::new()); assert_eq!(set.get(&[][..]).unwrap().capacity(), 0); set.replace(Vec::with_capacity(10)); assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);Run
pub fn remove<Q>(&mut self, value: &Q) -> bool where
Q: Ord + ?Sized,
T: Borrow<Q>,
[src]
Q: Ord + ?Sized,
T: Borrow<Q>,
Removes a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let mut set = BTreeSet::new(); set.insert(2); assert_eq!(set.remove(&2), true); assert_eq!(set.remove(&2), false);Run
pub fn take<Q>(&mut self, value: &Q) -> Option<T> where
Q: Ord + ?Sized,
T: Borrow<Q>,
1.9.0[src]
Q: Ord + ?Sized,
T: Borrow<Q>,
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set's value type, but the ordering on the borrowed form must match the ordering on the value type.
Examples
use std::collections::BTreeSet; let mut set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.take(&2), Some(2)); assert_eq!(set.take(&2), None);Run
pub fn append(&mut self, other: &mut BTreeSet<T>)
1.11.0[src]
Moves all elements from other
into Self
, leaving other
empty.
Examples
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); a.insert(3); let mut b = BTreeSet::new(); b.insert(3); b.insert(4); b.insert(5); a.append(&mut b); assert_eq!(a.len(), 5); assert_eq!(b.len(), 0); assert!(a.contains(&1)); assert!(a.contains(&2)); assert!(a.contains(&3)); assert!(a.contains(&4)); assert!(a.contains(&5));Run
pub fn split_off<Q>(&mut self, key: &Q) -> BTreeSet<T> where
Q: Ord + ?Sized,
T: Borrow<Q>,
1.11.0[src]
Q: Ord + ?Sized,
T: Borrow<Q>,
Splits the collection into two at the given key. Returns everything after the given key, including the key.
Examples
Basic usage:
use std::collections::BTreeSet; let mut a = BTreeSet::new(); a.insert(1); a.insert(2); a.insert(3); a.insert(17); a.insert(41); let b = a.split_off(&3); assert_eq!(a.len(), 2); assert_eq!(b.len(), 3); assert!(a.contains(&1)); assert!(a.contains(&2)); assert!(b.contains(&3)); assert!(b.contains(&17)); assert!(b.contains(&41));Run
impl<T> BTreeSet<T>
[src]
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>
[src]
Gets an iterator that visits the values in the BTreeSet
in ascending order.
Examples
use std::collections::BTreeSet; let set: BTreeSet<usize> = [1, 2, 3].iter().cloned().collect(); let mut set_iter = set.iter(); assert_eq!(set_iter.next(), Some(&1)); assert_eq!(set_iter.next(), Some(&2)); assert_eq!(set_iter.next(), Some(&3)); assert_eq!(set_iter.next(), None);Run
Values returned by the iterator are returned in ascending order:
use std::collections::BTreeSet; let set: BTreeSet<usize> = [3, 1, 2].iter().cloned().collect(); let mut set_iter = set.iter(); assert_eq!(set_iter.next(), Some(&1)); assert_eq!(set_iter.next(), Some(&2)); assert_eq!(set_iter.next(), Some(&3)); assert_eq!(set_iter.next(), None);Run
pub fn len(&self) -> usize
[src]
Returns the number of elements in the set.
Examples
use std::collections::BTreeSet; let mut v = BTreeSet::new(); assert_eq!(v.len(), 0); v.insert(1); assert_eq!(v.len(), 1);Run
pub fn is_empty(&self) -> bool
[src]
Trait Implementations
impl<T> Debug for BTreeSet<T> where
T: Debug,
[src]
T: Debug,
impl<T> Eq for BTreeSet<T> where
T: Eq,
[src]
T: Eq,
impl<'_, '_, T> BitOr<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
T: Ord + Clone,
[src]
T: Ord + Clone,
type Output = BTreeSet<T>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &BTreeSet<T>) -> BTreeSet<T>
[src]
Returns the union of self
and rhs
as a new BTreeSet<T>
.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect(); let result = &a | &b; let result_vec: Vec<_> = result.into_iter().collect(); assert_eq!(result_vec, [1, 2, 3, 4, 5]);Run
impl<T> Default for BTreeSet<T> where
T: Ord,
[src]
T: Ord,
impl<T> PartialEq<BTreeSet<T>> for BTreeSet<T> where
T: PartialEq<T>,
[src]
T: PartialEq<T>,
impl<'a, T> Extend<&'a T> for BTreeSet<T> where
T: 'a + Copy + Ord,
1.2.0[src]
T: 'a + Copy + Ord,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
[src]
I: IntoIterator<Item = &'a T>,
impl<T> Extend<T> for BTreeSet<T> where
T: Ord,
[src]
T: Ord,
fn extend<Iter>(&mut self, iter: Iter) where
Iter: IntoIterator<Item = T>,
[src]
Iter: IntoIterator<Item = T>,
impl<'_, '_, T> Sub<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
T: Ord + Clone,
[src]
T: Ord + Clone,
type Output = BTreeSet<T>
The resulting type after applying the -
operator.
fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T>
[src]
Returns the difference of self
and rhs
as a new BTreeSet<T>
.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect(); let result = &a - &b; let result_vec: Vec<_> = result.into_iter().collect(); assert_eq!(result_vec, [1, 2]);Run
impl<T> FromIterator<T> for BTreeSet<T> where
T: Ord,
[src]
T: Ord,
fn from_iter<I>(iter: I) -> BTreeSet<T> where
I: IntoIterator<Item = T>,
[src]
I: IntoIterator<Item = T>,
impl<'_, '_, T> BitAnd<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
T: Ord + Clone,
[src]
T: Ord + Clone,
type Output = BTreeSet<T>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &BTreeSet<T>) -> BTreeSet<T>
[src]
Returns the intersection of self
and rhs
as a new BTreeSet<T>
.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect(); let result = &a & &b; let result_vec: Vec<_> = result.into_iter().collect(); assert_eq!(result_vec, [2, 3]);Run
impl<T> Clone for BTreeSet<T> where
T: Clone,
[src]
T: Clone,
impl<T> Ord for BTreeSet<T> where
T: Ord,
[src]
T: Ord,
fn cmp(&self, other: &BTreeSet<T>) -> Ordering
[src]
fn max(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
1.21.0[src]
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl<'a, T> IntoIterator for &'a BTreeSet<T>
[src]
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for Iter<'a, T>fn into_iter(self) -> Iter<'a, T>
[src]
impl<T> IntoIterator for BTreeSet<T>
[src]
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IntoIter<T>fn into_iter(self) -> IntoIter<T>
[src]
impl<T> PartialOrd<BTreeSet<T>> for BTreeSet<T> where
T: PartialOrd<T>,
[src]
T: PartialOrd<T>,
fn partial_cmp(&self, other: &BTreeSet<T>) -> Option<Ordering>
[src]
fn lt(&self, other: &BTreeSet<T>) -> bool
[src]
fn le(&self, other: &BTreeSet<T>) -> bool
[src]
fn gt(&self, other: &BTreeSet<T>) -> bool
[src]
fn ge(&self, other: &BTreeSet<T>) -> bool
[src]
impl<T> Hash for BTreeSet<T> where
T: Hash,
[src]
T: Hash,
fn hash<__H>(&self, state: &mut __H) where
__H: Hasher,
[src]
__H: Hasher,
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<'_, '_, T> BitXor<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
T: Ord + Clone,
[src]
T: Ord + Clone,
type Output = BTreeSet<T>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &BTreeSet<T>) -> BTreeSet<T>
[src]
Returns the symmetric difference of self
and rhs
as a new BTreeSet<T>
.
Examples
use std::collections::BTreeSet; let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect(); let result = &a ^ &b; let result_vec: Vec<_> = result.into_iter().collect(); assert_eq!(result_vec, [1, 4]);Run
Auto Trait Implementations
impl<T> UnwindSafe for BTreeSet<T> where
T: RefUnwindSafe + UnwindSafe,
T: RefUnwindSafe + UnwindSafe,
impl<T> RefUnwindSafe for BTreeSet<T> where
T: RefUnwindSafe,
T: RefUnwindSafe,
impl<T> Unpin for BTreeSet<T> where
T: Unpin,
T: Unpin,
impl<T> Send for BTreeSet<T> where
T: Send,
T: Send,
impl<T> Sync for BTreeSet<T> where
T: Sync,
T: Sync,
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<I> IntoIterator for I where
I: Iterator,
[src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
ⓘImportant traits for &'_ mut Ffn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,