1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#![allow(missing_copy_implementations)]

use crate::fmt;
use crate::io::{self, Read, Initializer, Write, ErrorKind, BufRead, IoSlice, IoSliceMut};
use crate::mem::MaybeUninit;

/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If you’re wanting to copy the contents of one file to another and you’re
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: ../fs/fn.copy.html
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
///     let mut reader: &[u8] = b"hello";
///     let mut writer: Vec<u8> = vec![];
///
///     io::copy(&mut reader, &mut writer)?;
///
///     assert_eq!(&b"hello"[..], &writer[..]);
///     Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
    where R: Read, W: Write
{
    let mut buf = MaybeUninit::<[u8; super::DEFAULT_BUF_SIZE]>::uninit();
    // FIXME(#53491): This is calling `get_mut` and `get_ref` on an uninitialized
    // `MaybeUninit`. Revisit this once we decided whether that is valid or not.
    // This is still technically undefined behavior due to creating a reference
    // to uninitialized data, but within libstd we can rely on more guarantees
    // than if this code were in an external lib.
    unsafe { reader.initializer().initialize(buf.get_mut()); }

    let mut written = 0;
    loop {
        let len = match reader.read(unsafe { buf.get_mut() }) {
            Ok(0) => return Ok(written),
            Ok(len) => len,
            Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
            Err(e) => return Err(e),
        };
        writer.write_all(unsafe { &buf.get_ref()[..len] })?;
        written += len as u64;
    }
}

/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty`]. Please see
/// the documentation of [`empty()`][`empty`] for more details.
///
/// [`empty`]: fn.empty.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Empty { _priv: () }

/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return [`Ok`]`(0)`.
///
/// [`Ok`]: ../result/enum.Result.html#variant.Ok
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn empty() -> Empty { Empty { _priv: () } }

#[stable(feature = "rust1", since = "1.0.0")]
impl Read for Empty {
    #[inline]
    fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }

    #[inline]
    unsafe fn initializer(&self) -> Initializer {
        Initializer::nop()
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl BufRead for Empty {
    #[inline]
    fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
    #[inline]
    fn consume(&mut self, _n: usize) {}
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Empty {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Empty { .. }")
    }
}

/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Repeat { byte: u8 }

/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn repeat(byte: u8) -> Repeat { Repeat { byte } }

#[stable(feature = "rust1", since = "1.0.0")]
impl Read for Repeat {
    #[inline]
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        for slot in &mut *buf {
            *slot = self.byte;
        }
        Ok(buf.len())
    }

    #[inline]
    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
        let mut nwritten = 0;
        for buf in bufs {
            nwritten += self.read(buf)?;
        }
        Ok(nwritten)
    }

    #[inline]
    unsafe fn initializer(&self) -> Initializer {
        Initializer::nop()
    }
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Repeat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Repeat { .. }")
    }
}

/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sink { _priv: () }

/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sink() -> Sink { Sink { _priv: () } }

#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Sink {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }

    #[inline]
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        let total_len = bufs.iter().map(|b| b.len()).sum();
        Ok(total_len)
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Sink {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Sink { .. }")
    }
}

#[cfg(test)]
mod tests {
    use crate::io::prelude::*;
    use crate::io::{copy, sink, empty, repeat};

    #[test]
    fn copy_copies() {
        let mut r = repeat(0).take(4);
        let mut w = sink();
        assert_eq!(copy(&mut r, &mut w).unwrap(), 4);

        let mut r = repeat(0).take(1 << 17);
        assert_eq!(copy(&mut r as &mut dyn Read, &mut w as &mut dyn Write).unwrap(), 1 << 17);
    }

    #[test]
    fn sink_sinks() {
        let mut s = sink();
        assert_eq!(s.write(&[]).unwrap(), 0);
        assert_eq!(s.write(&[0]).unwrap(), 1);
        assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
        assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
    }

    #[test]
    fn empty_reads() {
        let mut e = empty();
        assert_eq!(e.read(&mut []).unwrap(), 0);
        assert_eq!(e.read(&mut [0]).unwrap(), 0);
        assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
        assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
    }

    #[test]
    fn repeat_repeats() {
        let mut r = repeat(4);
        let mut b = [0; 1024];
        assert_eq!(r.read(&mut b).unwrap(), 1024);
        assert!(b.iter().all(|b| *b == 4));
    }

    #[test]
    fn take_some_bytes() {
        assert_eq!(repeat(4).take(100).bytes().count(), 100);
        assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
        assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
    }
}