1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
// ignore-tidy-filelength

//! String manipulation.
//!
//! For more details, see the `std::str` module.

#![stable(feature = "rust1", since = "1.0.0")]

use self::pattern::Pattern;
use self::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher};

use crate::char;
use crate::fmt::{self, Write};
use crate::iter::{Map, Cloned, FusedIterator, TrustedLen, TrustedRandomAccess, Filter};
use crate::iter::{Flatten, FlatMap, Chain};
use crate::slice::{self, SliceIndex, Split as SliceSplit};
use crate::mem;
use crate::ops::Try;
use crate::option;

pub mod pattern;

#[unstable(feature = "str_internals", issue = "0")]
#[allow(missing_docs)]
pub mod lossy;

/// Parse a value from a string
///
/// `FromStr`'s [`from_str`] method is often used implicitly, through
/// [`str`]'s [`parse`] method. See [`parse`]'s documentation for examples.
///
/// [`from_str`]: #tymethod.from_str
/// [`str`]: ../../std/primitive.str.html
/// [`parse`]: ../../std/primitive.str.html#method.parse
///
/// `FromStr` does not have a lifetime parameter, and so you can only parse types
/// that do not contain a lifetime parameter themselves. In other words, you can
/// parse an `i32` with `FromStr`, but not a `&i32`. You can parse a struct that
/// contains an `i32`, but not one that contains an `&i32`.
///
/// # Examples
///
/// Basic implementation of `FromStr` on an example `Point` type:
///
/// ```
/// use std::str::FromStr;
/// use std::num::ParseIntError;
///
/// #[derive(Debug, PartialEq)]
/// struct Point {
///     x: i32,
///     y: i32
/// }
///
/// impl FromStr for Point {
///     type Err = ParseIntError;
///
///     fn from_str(s: &str) -> Result<Self, Self::Err> {
///         let coords: Vec<&str> = s.trim_matches(|p| p == '(' || p == ')' )
///                                  .split(',')
///                                  .collect();
///
///         let x_fromstr = coords[0].parse::<i32>()?;
///         let y_fromstr = coords[1].parse::<i32>()?;
///
///         Ok(Point { x: x_fromstr, y: y_fromstr })
///     }
/// }
///
/// let p = Point::from_str("(1,2)");
/// assert_eq!(p.unwrap(), Point{ x: 1, y: 2} )
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait FromStr: Sized {
    /// The associated error which can be returned from parsing.
    #[stable(feature = "rust1", since = "1.0.0")]
    type Err;

    /// Parses a string `s` to return a value of this type.
    ///
    /// If parsing succeeds, return the value inside [`Ok`], otherwise
    /// when the string is ill-formatted return an error specific to the
    /// inside [`Err`]. The error type is specific to implementation of the trait.
    ///
    /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok
    /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
    ///
    /// # Examples
    ///
    /// Basic usage with [`i32`][ithirtytwo], a type that implements `FromStr`:
    ///
    /// [ithirtytwo]: ../../std/primitive.i32.html
    ///
    /// ```
    /// use std::str::FromStr;
    ///
    /// let s = "5";
    /// let x = i32::from_str(s).unwrap();
    ///
    /// assert_eq!(5, x);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from_str(s: &str) -> Result<Self, Self::Err>;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for bool {
    type Err = ParseBoolError;

    /// Parse a `bool` from a string.
    ///
    /// Yields a `Result<bool, ParseBoolError>`, because `s` may or may not
    /// actually be parseable.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::str::FromStr;
    ///
    /// assert_eq!(FromStr::from_str("true"), Ok(true));
    /// assert_eq!(FromStr::from_str("false"), Ok(false));
    /// assert!(<bool as FromStr>::from_str("not even a boolean").is_err());
    /// ```
    ///
    /// Note, in many cases, the `.parse()` method on `str` is more proper.
    ///
    /// ```
    /// assert_eq!("true".parse(), Ok(true));
    /// assert_eq!("false".parse(), Ok(false));
    /// assert!("not even a boolean".parse::<bool>().is_err());
    /// ```
    #[inline]
    fn from_str(s: &str) -> Result<bool, ParseBoolError> {
        match s {
            "true"  => Ok(true),
            "false" => Ok(false),
            _       => Err(ParseBoolError { _priv: () }),
        }
    }
}

/// An error returned when parsing a `bool` using [`from_str`] fails
///
/// [`from_str`]: ../../std/primitive.bool.html#method.from_str
#[derive(Debug, Clone, PartialEq, Eq)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ParseBoolError { _priv: () }

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for ParseBoolError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        "provided string was not `true` or `false`".fmt(f)
    }
}

/*
Section: Creating a string
*/

/// Errors which can occur when attempting to interpret a sequence of [`u8`]
/// as a string.
///
/// [`u8`]: ../../std/primitive.u8.html
///
/// As such, the `from_utf8` family of functions and methods for both [`String`]s
/// and [`&str`]s make use of this error, for example.
///
/// [`String`]: ../../std/string/struct.String.html#method.from_utf8
/// [`&str`]: ../../std/str/fn.from_utf8.html
///
/// # Examples
///
/// This error type’s methods can be used to create functionality
/// similar to `String::from_utf8_lossy` without allocating heap memory:
///
/// ```
/// fn from_utf8_lossy<F>(mut input: &[u8], mut push: F) where F: FnMut(&str) {
///     loop {
///         match ::std::str::from_utf8(input) {
///             Ok(valid) => {
///                 push(valid);
///                 break
///             }
///             Err(error) => {
///                 let (valid, after_valid) = input.split_at(error.valid_up_to());
///                 unsafe {
///                     push(::std::str::from_utf8_unchecked(valid))
///                 }
///                 push("\u{FFFD}");
///
///                 if let Some(invalid_sequence_length) = error.error_len() {
///                     input = &after_valid[invalid_sequence_length..]
///                 } else {
///                     break
///                 }
///             }
///         }
///     }
/// }
/// ```
#[derive(Copy, Eq, PartialEq, Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Utf8Error {
    valid_up_to: usize,
    error_len: Option<u8>,
}

impl Utf8Error {
    /// Returns the index in the given string up to which valid UTF-8 was
    /// verified.
    ///
    /// It is the maximum index such that `from_utf8(&input[..index])`
    /// would return `Ok(_)`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::str;
    ///
    /// // some invalid bytes, in a vector
    /// let sparkle_heart = vec![0, 159, 146, 150];
    ///
    /// // std::str::from_utf8 returns a Utf8Error
    /// let error = str::from_utf8(&sparkle_heart).unwrap_err();
    ///
    /// // the second byte is invalid here
    /// assert_eq!(1, error.valid_up_to());
    /// ```
    #[stable(feature = "utf8_error", since = "1.5.0")]
    pub fn valid_up_to(&self) -> usize { self.valid_up_to }

    /// Provides more information about the failure:
    ///
    /// * `None`: the end of the input was reached unexpectedly.
    ///   `self.valid_up_to()` is 1 to 3 bytes from the end of the input.
    ///   If a byte stream (such as a file or a network socket) is being decoded incrementally,
    ///   this could be a valid `char` whose UTF-8 byte sequence is spanning multiple chunks.
    ///
    /// * `Some(len)`: an unexpected byte was encountered.
    ///   The length provided is that of the invalid byte sequence
    ///   that starts at the index given by `valid_up_to()`.
    ///   Decoding should resume after that sequence
    ///   (after inserting a [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD]) in case of
    ///   lossy decoding.
    ///
    /// [U+FFFD]: ../../std/char/constant.REPLACEMENT_CHARACTER.html
    #[stable(feature = "utf8_error_error_len", since = "1.20.0")]
    pub fn error_len(&self) -> Option<usize> {
        self.error_len.map(|len| len as usize)
    }
}

/// Converts a slice of bytes to a string slice.
///
/// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
/// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
/// the two. Not all byte slices are valid string slices, however: [`&str`] requires
/// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
/// UTF-8, and then does the conversion.
///
/// [`&str`]: ../../std/primitive.str.html
/// [`u8`]: ../../std/primitive.u8.html
/// [byteslice]: ../../std/primitive.slice.html
///
/// If you are sure that the byte slice is valid UTF-8, and you don't want to
/// incur the overhead of the validity check, there is an unsafe version of
/// this function, [`from_utf8_unchecked`][fromutf8u], which has the same
/// behavior but skips the check.
///
/// [fromutf8u]: fn.from_utf8_unchecked.html
///
/// If you need a `String` instead of a `&str`, consider
/// [`String::from_utf8`][string].
///
/// [string]: ../../std/string/struct.String.html#method.from_utf8
///
/// Because you can stack-allocate a `[u8; N]`, and you can take a
/// [`&[u8]`][byteslice] of it, this function is one way to have a
/// stack-allocated string. There is an example of this in the
/// examples section below.
///
/// [byteslice]: ../../std/primitive.slice.html
///
/// # Errors
///
/// Returns `Err` if the slice is not UTF-8 with a description as to why the
/// provided slice is not UTF-8.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::str;
///
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// // We know these bytes are valid, so just use `unwrap()`.
/// let sparkle_heart = str::from_utf8(&sparkle_heart).unwrap();
///
/// assert_eq!("💖", sparkle_heart);
/// ```
///
/// Incorrect bytes:
///
/// ```
/// use std::str;
///
/// // some invalid bytes, in a vector
/// let sparkle_heart = vec![0, 159, 146, 150];
///
/// assert!(str::from_utf8(&sparkle_heart).is_err());
/// ```
///
/// See the docs for [`Utf8Error`][error] for more details on the kinds of
/// errors that can be returned.
///
/// [error]: struct.Utf8Error.html
///
/// A "stack allocated string":
///
/// ```
/// use std::str;
///
/// // some bytes, in a stack-allocated array
/// let sparkle_heart = [240, 159, 146, 150];
///
/// // We know these bytes are valid, so just use `unwrap()`.
/// let sparkle_heart = str::from_utf8(&sparkle_heart).unwrap();
///
/// assert_eq!("💖", sparkle_heart);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
    run_utf8_validation(v)?;
    Ok(unsafe { from_utf8_unchecked(v) })
}

/// Converts a mutable slice of bytes to a mutable string slice.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::str;
///
/// // "Hello, Rust!" as a mutable vector
/// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
///
/// // As we know these bytes are valid, we can use `unwrap()`
/// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
///
/// assert_eq!("Hello, Rust!", outstr);
/// ```
///
/// Incorrect bytes:
///
/// ```
/// use std::str;
///
/// // Some invalid bytes in a mutable vector
/// let mut invalid = vec![128, 223];
///
/// assert!(str::from_utf8_mut(&mut invalid).is_err());
/// ```
/// See the docs for [`Utf8Error`][error] for more details on the kinds of
/// errors that can be returned.
///
/// [error]: struct.Utf8Error.html
#[stable(feature = "str_mut_extras", since = "1.20.0")]
pub fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
    run_utf8_validation(v)?;
    Ok(unsafe { from_utf8_unchecked_mut(v) })
}

/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
///
/// See the safe version, [`from_utf8`][fromutf8], for more information.
///
/// [fromutf8]: fn.from_utf8.html
///
/// # Safety
///
/// This function is unsafe because it does not check that the bytes passed to
/// it are valid UTF-8. If this constraint is violated, undefined behavior
/// results, as the rest of Rust assumes that [`&str`]s are valid UTF-8.
///
/// [`&str`]: ../../std/primitive.str.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::str;
///
/// // some bytes, in a vector
/// let sparkle_heart = vec![240, 159, 146, 150];
///
/// let sparkle_heart = unsafe {
///     str::from_utf8_unchecked(&sparkle_heart)
/// };
///
/// assert_eq!("💖", sparkle_heart);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
    &*(v as *const [u8] as *const str)
}

/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8; mutable version.
///
/// See the immutable version, [`from_utf8_unchecked()`][fromutf8], for more information.
///
/// [fromutf8]: fn.from_utf8_unchecked.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::str;
///
/// let mut heart = vec![240, 159, 146, 150];
/// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
///
/// assert_eq!("💖", heart);
/// ```
#[inline]
#[stable(feature = "str_mut_extras", since = "1.20.0")]
pub unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
    &mut *(v as *mut [u8] as *mut str)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Utf8Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(error_len) = self.error_len {
            write!(f, "invalid utf-8 sequence of {} bytes from index {}",
                   error_len, self.valid_up_to)
        } else {
            write!(f, "incomplete utf-8 byte sequence from index {}", self.valid_up_to)
        }
    }
}

/*
Section: Iterators
*/

/// An iterator over the [`char`]s of a string slice.
///
/// [`char`]: ../../std/primitive.char.html
///
/// This struct is created by the [`chars`] method on [`str`].
/// See its documentation for more.
///
/// [`chars`]: ../../std/primitive.str.html#method.chars
/// [`str`]: ../../std/primitive.str.html
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chars<'a> {
    iter: slice::Iter<'a, u8>
}

/// Returns the initial codepoint accumulator for the first byte.
/// The first byte is special, only want bottom 5 bits for width 2, 4 bits
/// for width 3, and 3 bits for width 4.
#[inline]
fn utf8_first_byte(byte: u8, width: u32) -> u32 { (byte & (0x7F >> width)) as u32 }

/// Returns the value of `ch` updated with continuation byte `byte`.
#[inline]
fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 { (ch << 6) | (byte & CONT_MASK) as u32 }

/// Checks whether the byte is a UTF-8 continuation byte (i.e., starts with the
/// bits `10`).
#[inline]
fn utf8_is_cont_byte(byte: u8) -> bool { (byte & !CONT_MASK) == TAG_CONT_U8 }

#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
    match opt {
        Some(&byte) => byte,
        None => 0,
    }
}

/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[unstable(feature = "str_internals", issue = "0")]
#[inline]
pub fn next_code_point<'a, I: Iterator<Item = &'a u8>>(bytes: &mut I) -> Option<u32> {
    // Decode UTF-8
    let x = *bytes.next()?;
    if x < 128 {
        return Some(x as u32)
    }

    // Multibyte case follows
    // Decode from a byte combination out of: [[[x y] z] w]
    // NOTE: Performance is sensitive to the exact formulation here
    let init = utf8_first_byte(x, 2);
    let y = unwrap_or_0(bytes.next());
    let mut ch = utf8_acc_cont_byte(init, y);
    if x >= 0xE0 {
        // [[x y z] w] case
        // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
        let z = unwrap_or_0(bytes.next());
        let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z);
        ch = init << 12 | y_z;
        if x >= 0xF0 {
            // [x y z w] case
            // use only the lower 3 bits of `init`
            let w = unwrap_or_0(bytes.next());
            ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w);
        }
    }

    Some(ch)
}

/// Reads the last code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[inline]
fn next_code_point_reverse<'a, I>(bytes: &mut I) -> Option<u32>
    where I: DoubleEndedIterator<Item = &'a u8>,
{
    // Decode UTF-8
    let w = match *bytes.next_back()? {
        next_byte if next_byte < 128 => return Some(next_byte as u32),
        back_byte => back_byte,
    };

    // Multibyte case follows
    // Decode from a byte combination out of: [x [y [z w]]]
    let mut ch;
    let z = unwrap_or_0(bytes.next_back());
    ch = utf8_first_byte(z, 2);
    if utf8_is_cont_byte(z) {
        let y = unwrap_or_0(bytes.next_back());
        ch = utf8_first_byte(y, 3);
        if utf8_is_cont_byte(y) {
            let x = unwrap_or_0(bytes.next_back());
            ch = utf8_first_byte(x, 4);
            ch = utf8_acc_cont_byte(ch, y);
        }
        ch = utf8_acc_cont_byte(ch, z);
    }
    ch = utf8_acc_cont_byte(ch, w);

    Some(ch)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Chars<'a> {
    type Item = char;

    #[inline]
    fn next(&mut self) -> Option<char> {
        next_code_point(&mut self.iter).map(|ch| {
            // str invariant says `ch` is a valid Unicode Scalar Value
            unsafe {
                char::from_u32_unchecked(ch)
            }
        })
    }

    #[inline]
    fn count(self) -> usize {
        // length in `char` is equal to the number of non-continuation bytes
        let bytes_len = self.iter.len();
        let mut cont_bytes = 0;
        for &byte in self.iter {
            cont_bytes += utf8_is_cont_byte(byte) as usize;
        }
        bytes_len - cont_bytes
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.iter.len();
        // `(len + 3)` can't overflow, because we know that the `slice::Iter`
        // belongs to a slice in memory which has a maximum length of
        // `isize::MAX` (that's well below `usize::MAX`).
        ((len + 3) / 4, Some(len))
    }

    #[inline]
    fn last(mut self) -> Option<char> {
        // No need to go through the entire string.
        self.next_back()
    }
}

#[stable(feature = "chars_debug_impl", since = "1.38.0")]
impl fmt::Debug for Chars<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Chars(")?;
        f.debug_list().entries(self.clone()).finish()?;
        write!(f, ")")?;
        Ok(())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Chars<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<char> {
        next_code_point_reverse(&mut self.iter).map(|ch| {
            // str invariant says `ch` is a valid Unicode Scalar Value
            unsafe {
                char::from_u32_unchecked(ch)
            }
        })
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for Chars<'_> {}

impl<'a> Chars<'a> {
    /// Views the underlying data as a subslice of the original data.
    ///
    /// This has the same lifetime as the original slice, and so the
    /// iterator can continue to be used while this exists.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut chars = "abc".chars();
    ///
    /// assert_eq!(chars.as_str(), "abc");
    /// chars.next();
    /// assert_eq!(chars.as_str(), "bc");
    /// chars.next();
    /// chars.next();
    /// assert_eq!(chars.as_str(), "");
    /// ```
    #[stable(feature = "iter_to_slice", since = "1.4.0")]
    #[inline]
    pub fn as_str(&self) -> &'a str {
        unsafe { from_utf8_unchecked(self.iter.as_slice()) }
    }
}

/// An iterator over the [`char`]s of a string slice, and their positions.
///
/// [`char`]: ../../std/primitive.char.html
///
/// This struct is created by the [`char_indices`] method on [`str`].
/// See its documentation for more.
///
/// [`char_indices`]: ../../std/primitive.str.html#method.char_indices
/// [`str`]: ../../std/primitive.str.html
#[derive(Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct CharIndices<'a> {
    front_offset: usize,
    iter: Chars<'a>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for CharIndices<'a> {
    type Item = (usize, char);

    #[inline]
    fn next(&mut self) -> Option<(usize, char)> {
        let pre_len = self.iter.iter.len();
        match self.iter.next() {
            None => None,
            Some(ch) => {
                let index = self.front_offset;
                let len = self.iter.iter.len();
                self.front_offset += pre_len - len;
                Some((index, ch))
            }
        }
    }

    #[inline]
    fn count(self) -> usize {
        self.iter.count()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn last(mut self) -> Option<(usize, char)> {
        // No need to go through the entire string.
        self.next_back()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for CharIndices<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<(usize, char)> {
        self.iter.next_back().map(|ch| {
            let index = self.front_offset + self.iter.iter.len();
            (index, ch)
        })
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for CharIndices<'_> {}

impl<'a> CharIndices<'a> {
    /// Views the underlying data as a subslice of the original data.
    ///
    /// This has the same lifetime as the original slice, and so the
    /// iterator can continue to be used while this exists.
    #[stable(feature = "iter_to_slice", since = "1.4.0")]
    #[inline]
    pub fn as_str(&self) -> &'a str {
        self.iter.as_str()
    }
}

/// An iterator over the bytes of a string slice.
///
/// This struct is created by the [`bytes`] method on [`str`].
/// See its documentation for more.
///
/// [`bytes`]: ../../std/primitive.str.html#method.bytes
/// [`str`]: ../../std/primitive.str.html
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone, Debug)]
pub struct Bytes<'a>(Cloned<slice::Iter<'a, u8>>);

#[stable(feature = "rust1", since = "1.0.0")]
impl Iterator for Bytes<'_> {
    type Item = u8;

    #[inline]
    fn next(&mut self) -> Option<u8> {
        self.0.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }

    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }

    #[inline]
    fn last(self) -> Option<Self::Item> {
        self.0.last()
    }

    #[inline]
    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.0.nth(n)
    }

    #[inline]
    fn all<F>(&mut self, f: F) -> bool where F: FnMut(Self::Item) -> bool {
        self.0.all(f)
    }

    #[inline]
    fn any<F>(&mut self, f: F) -> bool where F: FnMut(Self::Item) -> bool {
        self.0.any(f)
    }

    #[inline]
    fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where
        P: FnMut(&Self::Item) -> bool
    {
        self.0.find(predicate)
    }

    #[inline]
    fn position<P>(&mut self, predicate: P) -> Option<usize> where
        P: FnMut(Self::Item) -> bool
    {
        self.0.position(predicate)
    }

    #[inline]
    fn rposition<P>(&mut self, predicate: P) -> Option<usize> where
        P: FnMut(Self::Item) -> bool
    {
        self.0.rposition(predicate)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl DoubleEndedIterator for Bytes<'_> {
    #[inline]
    fn next_back(&mut self) -> Option<u8> {
        self.0.next_back()
    }

    #[inline]
    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
        self.0.nth_back(n)
    }

    #[inline]
    fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item> where
        P: FnMut(&Self::Item) -> bool
    {
        self.0.rfind(predicate)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl ExactSizeIterator for Bytes<'_> {
    #[inline]
    fn len(&self) -> usize {
        self.0.len()
    }

    #[inline]
    fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for Bytes<'_> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl TrustedLen for Bytes<'_> {}

#[doc(hidden)]
unsafe impl TrustedRandomAccess for Bytes<'_> {
    unsafe fn get_unchecked(&mut self, i: usize) -> u8 {
        self.0.get_unchecked(i)
    }
    fn may_have_side_effect() -> bool { false }
}

/// This macro generates a Clone impl for string pattern API
/// wrapper types of the form X<'a, P>
macro_rules! derive_pattern_clone {
    (clone $t:ident with |$s:ident| $e:expr) => {
        impl<'a, P> Clone for $t<'a, P>
        where
            P: Pattern<'a, Searcher: Clone>,
        {
            fn clone(&self) -> Self {
                let $s = self;
                $e
            }
        }
    }
}

/// This macro generates two public iterator structs
/// wrapping a private internal one that makes use of the `Pattern` API.
///
/// For all patterns `P: Pattern<'a>` the following items will be
/// generated (generics omitted):
///
/// struct $forward_iterator($internal_iterator);
/// struct $reverse_iterator($internal_iterator);
///
/// impl Iterator for $forward_iterator
/// { /* internal ends up calling Searcher::next_match() */ }
///
/// impl DoubleEndedIterator for $forward_iterator
///       where P::Searcher: DoubleEndedSearcher
/// { /* internal ends up calling Searcher::next_match_back() */ }
///
/// impl Iterator for $reverse_iterator
///       where P::Searcher: ReverseSearcher
/// { /* internal ends up calling Searcher::next_match_back() */ }
///
/// impl DoubleEndedIterator for $reverse_iterator
///       where P::Searcher: DoubleEndedSearcher
/// { /* internal ends up calling Searcher::next_match() */ }
///
/// The internal one is defined outside the macro, and has almost the same
/// semantic as a DoubleEndedIterator by delegating to `pattern::Searcher` and
/// `pattern::ReverseSearcher` for both forward and reverse iteration.
///
/// "Almost", because a `Searcher` and a `ReverseSearcher` for a given
/// `Pattern` might not return the same elements, so actually implementing
/// `DoubleEndedIterator` for it would be incorrect.
/// (See the docs in `str::pattern` for more details)
///
/// However, the internal struct still represents a single ended iterator from
/// either end, and depending on pattern is also a valid double ended iterator,
/// so the two wrapper structs implement `Iterator`
/// and `DoubleEndedIterator` depending on the concrete pattern type, leading
/// to the complex impls seen above.
macro_rules! generate_pattern_iterators {
    {
        // Forward iterator
        forward:
            $(#[$forward_iterator_attribute:meta])*
            struct $forward_iterator:ident;

        // Reverse iterator
        reverse:
            $(#[$reverse_iterator_attribute:meta])*
            struct $reverse_iterator:ident;

        // Stability of all generated items
        stability:
            $(#[$common_stability_attribute:meta])*

        // Internal almost-iterator that is being delegated to
        internal:
            $internal_iterator:ident yielding ($iterty:ty);

        // Kind of delegation - either single ended or double ended
        delegate $($t:tt)*
    } => {
        $(#[$forward_iterator_attribute])*
        $(#[$common_stability_attribute])*
        pub struct $forward_iterator<'a, P: Pattern<'a>>($internal_iterator<'a, P>);

        $(#[$common_stability_attribute])*
        impl<'a, P> fmt::Debug for $forward_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: fmt::Debug>,
        {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.debug_tuple(stringify!($forward_iterator))
                    .field(&self.0)
                    .finish()
            }
        }

        $(#[$common_stability_attribute])*
        impl<'a, P: Pattern<'a>> Iterator for $forward_iterator<'a, P> {
            type Item = $iterty;

            #[inline]
            fn next(&mut self) -> Option<$iterty> {
                self.0.next()
            }
        }

        $(#[$common_stability_attribute])*
        impl<'a, P> Clone for $forward_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: Clone>,
        {
            fn clone(&self) -> Self {
                $forward_iterator(self.0.clone())
            }
        }

        $(#[$reverse_iterator_attribute])*
        $(#[$common_stability_attribute])*
        pub struct $reverse_iterator<'a, P: Pattern<'a>>($internal_iterator<'a, P>);

        $(#[$common_stability_attribute])*
        impl<'a, P> fmt::Debug for $reverse_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: fmt::Debug>,
        {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.debug_tuple(stringify!($reverse_iterator))
                    .field(&self.0)
                    .finish()
            }
        }

        $(#[$common_stability_attribute])*
        impl<'a, P> Iterator for $reverse_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
        {
            type Item = $iterty;

            #[inline]
            fn next(&mut self) -> Option<$iterty> {
                self.0.next_back()
            }
        }

        $(#[$common_stability_attribute])*
        impl<'a, P> Clone for $reverse_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: Clone>,
        {
            fn clone(&self) -> Self {
                $reverse_iterator(self.0.clone())
            }
        }

        #[stable(feature = "fused", since = "1.26.0")]
        impl<'a, P: Pattern<'a>> FusedIterator for $forward_iterator<'a, P> {}

        #[stable(feature = "fused", since = "1.26.0")]
        impl<'a, P> FusedIterator for $reverse_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
        {}

        generate_pattern_iterators!($($t)* with $(#[$common_stability_attribute])*,
                                                $forward_iterator,
                                                $reverse_iterator, $iterty);
    };
    {
        double ended; with $(#[$common_stability_attribute:meta])*,
                           $forward_iterator:ident,
                           $reverse_iterator:ident, $iterty:ty
    } => {
        $(#[$common_stability_attribute])*
        impl<'a, P> DoubleEndedIterator for $forward_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>,
        {
            #[inline]
            fn next_back(&mut self) -> Option<$iterty> {
                self.0.next_back()
            }
        }

        $(#[$common_stability_attribute])*
        impl<'a, P> DoubleEndedIterator for $reverse_iterator<'a, P>
        where
            P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>,
        {
            #[inline]
            fn next_back(&mut self) -> Option<$iterty> {
                self.0.next()
            }
        }
    };
    {
        single ended; with $(#[$common_stability_attribute:meta])*,
                           $forward_iterator:ident,
                           $reverse_iterator:ident, $iterty:ty
    } => {}
}

derive_pattern_clone!{
    clone SplitInternal
    with |s| SplitInternal { matcher: s.matcher.clone(), ..*s }
}

struct SplitInternal<'a, P: Pattern<'a>> {
    start: usize,
    end: usize,
    matcher: P::Searcher,
    allow_trailing_empty: bool,
    finished: bool,
}

impl<'a, P> fmt::Debug for SplitInternal<'a, P>
where
    P: Pattern<'a, Searcher: fmt::Debug>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SplitInternal")
            .field("start", &self.start)
            .field("end", &self.end)
            .field("matcher", &self.matcher)
            .field("allow_trailing_empty", &self.allow_trailing_empty)
            .field("finished", &self.finished)
            .finish()
    }
}

impl<'a, P: Pattern<'a>> SplitInternal<'a, P> {
    #[inline]
    fn get_end(&mut self) -> Option<&'a str> {
        if !self.finished && (self.allow_trailing_empty || self.end - self.start > 0) {
            self.finished = true;
            unsafe {
                let string = self.matcher.haystack().get_unchecked(self.start..self.end);
                Some(string)
            }
        } else {
            None
        }
    }

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        let haystack = self.matcher.haystack();
        match self.matcher.next_match() {
            Some((a, b)) => unsafe {
                let elt = haystack.get_unchecked(self.start..a);
                self.start = b;
                Some(elt)
            },
            None => self.get_end(),
        }
    }

    #[inline]
    fn next_back(&mut self) -> Option<&'a str>
        where P::Searcher: ReverseSearcher<'a>
    {
        if self.finished { return None }

        if !self.allow_trailing_empty {
            self.allow_trailing_empty = true;
            match self.next_back() {
                Some(elt) if !elt.is_empty() => return Some(elt),
                _ => if self.finished { return None }
            }
        }

        let haystack = self.matcher.haystack();
        match self.matcher.next_match_back() {
            Some((a, b)) => unsafe {
                let elt = haystack.get_unchecked(b..self.end);
                self.end = a;
                Some(elt)
            },
            None => unsafe {
                self.finished = true;
                Some(haystack.get_unchecked(self.start..self.end))
            },
        }
    }
}

generate_pattern_iterators! {
    forward:
        /// Created with the method [`split`].
        ///
        /// [`split`]: ../../std/primitive.str.html#method.split
        struct Split;
    reverse:
        /// Created with the method [`rsplit`].
        ///
        /// [`rsplit`]: ../../std/primitive.str.html#method.rsplit
        struct RSplit;
    stability:
        #[stable(feature = "rust1", since = "1.0.0")]
    internal:
        SplitInternal yielding (&'a str);
    delegate double ended;
}

generate_pattern_iterators! {
    forward:
        /// Created with the method [`split_terminator`].
        ///
        /// [`split_terminator`]: ../../std/primitive.str.html#method.split_terminator
        struct SplitTerminator;
    reverse:
        /// Created with the method [`rsplit_terminator`].
        ///
        /// [`rsplit_terminator`]: ../../std/primitive.str.html#method.rsplit_terminator
        struct RSplitTerminator;
    stability:
        #[stable(feature = "rust1", since = "1.0.0")]
    internal:
        SplitInternal yielding (&'a str);
    delegate double ended;
}

derive_pattern_clone!{
    clone SplitNInternal
    with |s| SplitNInternal { iter: s.iter.clone(), ..*s }
}

struct SplitNInternal<'a, P: Pattern<'a>> {
    iter: SplitInternal<'a, P>,
    /// The number of splits remaining
    count: usize,
}

impl<'a, P> fmt::Debug for SplitNInternal<'a, P>
where
    P: Pattern<'a, Searcher: fmt::Debug>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SplitNInternal")
            .field("iter", &self.iter)
            .field("count", &self.count)
            .finish()
    }
}

impl<'a, P: Pattern<'a>> SplitNInternal<'a, P> {
    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        match self.count {
            0 => None,
            1 => { self.count = 0; self.iter.get_end() }
            _ => { self.count -= 1; self.iter.next() }
        }
    }

    #[inline]
    fn next_back(&mut self) -> Option<&'a str>
        where P::Searcher: ReverseSearcher<'a>
    {
        match self.count {
            0 => None,
            1 => { self.count = 0; self.iter.get_end() }
            _ => { self.count -= 1; self.iter.next_back() }
        }
    }
}

generate_pattern_iterators! {
    forward:
        /// Created with the method [`splitn`].
        ///
        /// [`splitn`]: ../../std/primitive.str.html#method.splitn
        struct SplitN;
    reverse:
        /// Created with the method [`rsplitn`].
        ///
        /// [`rsplitn`]: ../../std/primitive.str.html#method.rsplitn
        struct RSplitN;
    stability:
        #[stable(feature = "rust1", since = "1.0.0")]
    internal:
        SplitNInternal yielding (&'a str);
    delegate single ended;
}

derive_pattern_clone!{
    clone MatchIndicesInternal
    with |s| MatchIndicesInternal(s.0.clone())
}

struct MatchIndicesInternal<'a, P: Pattern<'a>>(P::Searcher);

impl<'a, P> fmt::Debug for MatchIndicesInternal<'a, P>
where
    P: Pattern<'a, Searcher: fmt::Debug>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("MatchIndicesInternal")
            .field(&self.0)
            .finish()
    }
}

impl<'a, P: Pattern<'a>> MatchIndicesInternal<'a, P> {
    #[inline]
    fn next(&mut self) -> Option<(usize, &'a str)> {
        self.0.next_match().map(|(start, end)| unsafe {
            (start, self.0.haystack().get_unchecked(start..end))
        })
    }

    #[inline]
    fn next_back(&mut self) -> Option<(usize, &'a str)>
        where P::Searcher: ReverseSearcher<'a>
    {
        self.0.next_match_back().map(|(start, end)| unsafe {
            (start, self.0.haystack().get_unchecked(start..end))
        })
    }
}

generate_pattern_iterators! {
    forward:
        /// Created with the method [`match_indices`].
        ///
        /// [`match_indices`]: ../../std/primitive.str.html#method.match_indices
        struct MatchIndices;
    reverse:
        /// Created with the method [`rmatch_indices`].
        ///
        /// [`rmatch_indices`]: ../../std/primitive.str.html#method.rmatch_indices
        struct RMatchIndices;
    stability:
        #[stable(feature = "str_match_indices", since = "1.5.0")]
    internal:
        MatchIndicesInternal yielding ((usize, &'a str));
    delegate double ended;
}

derive_pattern_clone!{
    clone MatchesInternal
    with |s| MatchesInternal(s.0.clone())
}

struct MatchesInternal<'a, P: Pattern<'a>>(P::Searcher);

impl<'a, P> fmt::Debug for MatchesInternal<'a, P>
where
    P: Pattern<'a, Searcher: fmt::Debug>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("MatchesInternal")
            .field(&self.0)
            .finish()
    }
}

impl<'a, P: Pattern<'a>> MatchesInternal<'a, P> {
    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        self.0.next_match().map(|(a, b)| unsafe {
            // Indices are known to be on utf8 boundaries
            self.0.haystack().get_unchecked(a..b)
        })
    }

    #[inline]
    fn next_back(&mut self) -> Option<&'a str>
        where P::Searcher: ReverseSearcher<'a>
    {
        self.0.next_match_back().map(|(a, b)| unsafe {
            // Indices are known to be on utf8 boundaries
            self.0.haystack().get_unchecked(a..b)
        })
    }
}

generate_pattern_iterators! {
    forward:
        /// Created with the method [`matches`].
        ///
        /// [`matches`]: ../../std/primitive.str.html#method.matches
        struct Matches;
    reverse:
        /// Created with the method [`rmatches`].
        ///
        /// [`rmatches`]: ../../std/primitive.str.html#method.rmatches
        struct RMatches;
    stability:
        #[stable(feature = "str_matches", since = "1.2.0")]
    internal:
        MatchesInternal yielding (&'a str);
    delegate double ended;
}

/// An iterator over the lines of a string, as string slices.
///
/// This struct is created with the [`lines`] method on [`str`].
/// See its documentation for more.
///
/// [`lines`]: ../../std/primitive.str.html#method.lines
/// [`str`]: ../../std/primitive.str.html
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone, Debug)]
pub struct Lines<'a>(Map<SplitTerminator<'a, char>, LinesAnyMap>);

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Lines<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        self.0.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }

    #[inline]
    fn last(mut self) -> Option<&'a str> {
        self.next_back()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Lines<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        self.0.next_back()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for Lines<'_> {}

/// Created with the method [`lines_any`].
///
/// [`lines_any`]: ../../std/primitive.str.html#method.lines_any
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.4.0", reason = "use lines()/Lines instead now")]
#[derive(Clone, Debug)]
#[allow(deprecated)]
pub struct LinesAny<'a>(Lines<'a>);

impl_fn_for_zst! {
    /// A nameable, cloneable fn type
    #[derive(Clone)]
    struct LinesAnyMap impl<'a> Fn = |line: &'a str| -> &'a str {
        let l = line.len();
        if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] }
        else { line }
    };
}

#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated)]
impl<'a> Iterator for LinesAny<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        self.0.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated)]
impl<'a> DoubleEndedIterator for LinesAny<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        self.0.next_back()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
#[allow(deprecated)]
impl FusedIterator for LinesAny<'_> {}

/*
Section: UTF-8 validation
*/

// use truncation to fit u64 into usize
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;

/// Returns `true` if any byte in the word `x` is nonascii (>= 128).
#[inline]
fn contains_nonascii(x: usize) -> bool {
    (x & NONASCII_MASK) != 0
}

/// Walks through `v` checking that it's a valid UTF-8 sequence,
/// returning `Ok(())` in that case, or, if it is invalid, `Err(err)`.
#[inline]
fn run_utf8_validation(v: &[u8]) -> Result<(), Utf8Error> {
    let mut index = 0;
    let len = v.len();

    let usize_bytes = mem::size_of::<usize>();
    let ascii_block_size = 2 * usize_bytes;
    let blocks_end = if len >= ascii_block_size { len - ascii_block_size + 1 } else { 0 };
    let align = v.as_ptr().align_offset(usize_bytes);

    while index < len {
        let old_offset = index;
        macro_rules! err {
            ($error_len: expr) => {
                return Err(Utf8Error {
                    valid_up_to: old_offset,
                    error_len: $error_len,
                })
            }
        }

        macro_rules! next { () => {{
            index += 1;
            // we needed data, but there was none: error!
            if index >= len {
                err!(None)
            }
            v[index]
        }}}

        let first = v[index];
        if first >= 128 {
            let w = UTF8_CHAR_WIDTH[first as usize];
            // 2-byte encoding is for codepoints  \u{0080} to  \u{07ff}
            //        first  C2 80        last DF BF
            // 3-byte encoding is for codepoints  \u{0800} to  \u{ffff}
            //        first  E0 A0 80     last EF BF BF
            //   excluding surrogates codepoints  \u{d800} to  \u{dfff}
            //               ED A0 80 to       ED BF BF
            // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
            //        first  F0 90 80 80  last F4 8F BF BF
            //
            // Use the UTF-8 syntax from the RFC
            //
            // https://tools.ietf.org/html/rfc3629
            // UTF8-1      = %x00-7F
            // UTF8-2      = %xC2-DF UTF8-tail
            // UTF8-3      = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
            //               %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
            // UTF8-4      = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
            //               %xF4 %x80-8F 2( UTF8-tail )
            match w {
                2 => if next!() & !CONT_MASK != TAG_CONT_U8 {
                    err!(Some(1))
                },
                3 => {
                    match (first, next!()) {
                        (0xE0         , 0xA0 ..= 0xBF) |
                        (0xE1 ..= 0xEC, 0x80 ..= 0xBF) |
                        (0xED         , 0x80 ..= 0x9F) |
                        (0xEE ..= 0xEF, 0x80 ..= 0xBF) => {}
                        _ => err!(Some(1))
                    }
                    if next!() & !CONT_MASK != TAG_CONT_U8 {
                        err!(Some(2))
                    }
                }
                4 => {
                    match (first, next!()) {
                        (0xF0         , 0x90 ..= 0xBF) |
                        (0xF1 ..= 0xF3, 0x80 ..= 0xBF) |
                        (0xF4         , 0x80 ..= 0x8F) => {}
                        _ => err!(Some(1))
                    }
                    if next!() & !CONT_MASK != TAG_CONT_U8 {
                        err!(Some(2))
                    }
                    if next!() & !CONT_MASK != TAG_CONT_U8 {
                        err!(Some(3))
                    }
                }
                _ => err!(Some(1))
            }
            index += 1;
        } else {
            // Ascii case, try to skip forward quickly.
            // When the pointer is aligned, read 2 words of data per iteration
            // until we find a word containing a non-ascii byte.
            if align != usize::max_value() && align.wrapping_sub(index) % usize_bytes == 0 {
                let ptr = v.as_ptr();
                while index < blocks_end {
                    unsafe {
                        let block = ptr.add(index) as *const usize;
                        // break if there is a nonascii byte
                        let zu = contains_nonascii(*block);
                        let zv = contains_nonascii(*block.offset(1));
                        if zu | zv {
                            break;
                        }
                    }
                    index += ascii_block_size;
                }
                // step from the point where the wordwise loop stopped
                while index < len && v[index] < 128 {
                    index += 1;
                }
            } else {
                index += 1;
            }
        }
    }

    Ok(())
}

// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8; 256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];

/// Given a first byte, determines how many bytes are in this UTF-8 character.
#[unstable(feature = "str_internals", issue = "0")]
#[inline]
pub fn utf8_char_width(b: u8) -> usize {
    UTF8_CHAR_WIDTH[b as usize] as usize
}

/// Mask of the value bits of a continuation byte.
const CONT_MASK: u8 = 0b0011_1111;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte.
const TAG_CONT_U8: u8 = 0b1000_0000;

/*
Section: Trait implementations
*/

mod traits {
    use crate::cmp::Ordering;
    use crate::ops;
    use crate::slice::{self, SliceIndex};

    /// Implements ordering of strings.
    ///
    /// Strings are ordered  lexicographically by their byte values. This orders Unicode code
    /// points based on their positions in the code charts. This is not necessarily the same as
    /// "alphabetical" order, which varies by language and locale. Sorting strings according to
    /// culturally-accepted standards requires locale-specific data that is outside the scope of
    /// the `str` type.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl Ord for str {
        #[inline]
        fn cmp(&self, other: &str) -> Ordering {
            self.as_bytes().cmp(other.as_bytes())
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialEq for str {
        #[inline]
        fn eq(&self, other: &str) -> bool {
            self.as_bytes() == other.as_bytes()
        }
        #[inline]
        fn ne(&self, other: &str) -> bool { !(*self).eq(other) }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Eq for str {}

    /// Implements comparison operations on strings.
    ///
    /// Strings are compared lexicographically by their byte values. This compares Unicode code
    /// points based on their positions in the code charts. This is not necessarily the same as
    /// "alphabetical" order, which varies by language and locale. Comparing strings according to
    /// culturally-accepted standards requires locale-specific data that is outside the scope of
    /// the `str` type.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialOrd for str {
        #[inline]
        fn partial_cmp(&self, other: &str) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl<I> ops::Index<I> for str
    where
        I: SliceIndex<str>,
    {
        type Output = I::Output;

        #[inline]
        fn index(&self, index: I) -> &I::Output {
            index.index(self)
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl<I> ops::IndexMut<I> for str
    where
        I: SliceIndex<str>,
    {
        #[inline]
        fn index_mut(&mut self, index: I) -> &mut I::Output {
            index.index_mut(self)
        }
    }

    #[inline(never)]
    #[cold]
    fn str_index_overflow_fail() -> ! {
        panic!("attempted to index str up to maximum usize");
    }

    /// Implements substring slicing with syntax `&self[..]` or `&mut self[..]`.
    ///
    /// Returns a slice of the whole string, i.e., returns `&self` or `&mut
    /// self`. Equivalent to `&self[0 .. len]` or `&mut self[0 .. len]`. Unlike
    /// other indexing operations, this can never panic.
    ///
    /// This operation is `O(1)`.
    ///
    /// Prior to 1.20.0, these indexing operations were still supported by
    /// direct implementation of `Index` and `IndexMut`.
    ///
    /// Equivalent to `&self[0 .. len]` or `&mut self[0 .. len]`.
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    impl SliceIndex<str> for ops::RangeFull {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            Some(slice)
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            Some(slice)
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            slice
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            slice
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            slice
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            slice
        }
    }

    /// Implements substring slicing with syntax `&self[begin .. end]` or `&mut
    /// self[begin .. end]`.
    ///
    /// Returns a slice of the given string from the byte range
    /// [`begin`, `end`).
    ///
    /// This operation is `O(1)`.
    ///
    /// Prior to 1.20.0, these indexing operations were still supported by
    /// direct implementation of `Index` and `IndexMut`.
    ///
    /// # Panics
    ///
    /// Panics if `begin` or `end` does not point to the starting byte offset of
    /// a character (as defined by `is_char_boundary`), if `begin > end`, or if
    /// `end > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(&s[0 .. 1], "L");
    ///
    /// assert_eq!(&s[1 .. 9], "öwe 老");
    ///
    /// // these will panic:
    /// // byte 2 lies within `ö`:
    /// // &s[2 ..3];
    ///
    /// // byte 8 lies within `老`
    /// // &s[1 .. 8];
    ///
    /// // byte 100 is outside the string
    /// // &s[3 .. 100];
    /// ```
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    impl SliceIndex<str> for ops::Range<usize> {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            if self.start <= self.end &&
               slice.is_char_boundary(self.start) &&
               slice.is_char_boundary(self.end) {
                Some(unsafe { self.get_unchecked(slice) })
            } else {
                None
            }
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            if self.start <= self.end &&
               slice.is_char_boundary(self.start) &&
               slice.is_char_boundary(self.end) {
                Some(unsafe { self.get_unchecked_mut(slice) })
            } else {
                None
            }
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            let ptr = slice.as_ptr().add(self.start);
            let len = self.end - self.start;
            super::from_utf8_unchecked(slice::from_raw_parts(ptr, len))
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            let ptr = slice.as_mut_ptr().add(self.start);
            let len = self.end - self.start;
            super::from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, len))
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            let (start, end) = (self.start, self.end);
            self.get(slice).unwrap_or_else(|| super::slice_error_fail(slice, start, end))
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            // is_char_boundary checks that the index is in [0, .len()]
            // cannot reuse `get` as above, because of NLL trouble
            if self.start <= self.end &&
               slice.is_char_boundary(self.start) &&
               slice.is_char_boundary(self.end) {
                unsafe { self.get_unchecked_mut(slice) }
            } else {
                super::slice_error_fail(slice, self.start, self.end)
            }
        }
    }

    /// Implements substring slicing with syntax `&self[.. end]` or `&mut
    /// self[.. end]`.
    ///
    /// Returns a slice of the given string from the byte range [`0`, `end`).
    /// Equivalent to `&self[0 .. end]` or `&mut self[0 .. end]`.
    ///
    /// This operation is `O(1)`.
    ///
    /// Prior to 1.20.0, these indexing operations were still supported by
    /// direct implementation of `Index` and `IndexMut`.
    ///
    /// # Panics
    ///
    /// Panics if `end` does not point to the starting byte offset of a
    /// character (as defined by `is_char_boundary`), or if `end > len`.
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    impl SliceIndex<str> for ops::RangeTo<usize> {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            if slice.is_char_boundary(self.end) {
                Some(unsafe { self.get_unchecked(slice) })
            } else {
                None
            }
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            if slice.is_char_boundary(self.end) {
                Some(unsafe { self.get_unchecked_mut(slice) })
            } else {
                None
            }
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            let ptr = slice.as_ptr();
            super::from_utf8_unchecked(slice::from_raw_parts(ptr, self.end))
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            let ptr = slice.as_mut_ptr();
            super::from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, self.end))
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            let end = self.end;
            self.get(slice).unwrap_or_else(|| super::slice_error_fail(slice, 0, end))
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            // is_char_boundary checks that the index is in [0, .len()]
            if slice.is_char_boundary(self.end) {
                unsafe { self.get_unchecked_mut(slice) }
            } else {
                super::slice_error_fail(slice, 0, self.end)
            }
        }
    }

    /// Implements substring slicing with syntax `&self[begin ..]` or `&mut
    /// self[begin ..]`.
    ///
    /// Returns a slice of the given string from the byte range [`begin`,
    /// `len`). Equivalent to `&self[begin .. len]` or `&mut self[begin ..
    /// len]`.
    ///
    /// This operation is `O(1)`.
    ///
    /// Prior to 1.20.0, these indexing operations were still supported by
    /// direct implementation of `Index` and `IndexMut`.
    ///
    /// # Panics
    ///
    /// Panics if `begin` does not point to the starting byte offset of
    /// a character (as defined by `is_char_boundary`), or if `begin >= len`.
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    impl SliceIndex<str> for ops::RangeFrom<usize> {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            if slice.is_char_boundary(self.start) {
                Some(unsafe { self.get_unchecked(slice) })
            } else {
                None
            }
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            if slice.is_char_boundary(self.start) {
                Some(unsafe { self.get_unchecked_mut(slice) })
            } else {
                None
            }
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            let ptr = slice.as_ptr().add(self.start);
            let len = slice.len() - self.start;
            super::from_utf8_unchecked(slice::from_raw_parts(ptr, len))
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            let ptr = slice.as_mut_ptr().add(self.start);
            let len = slice.len() - self.start;
            super::from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, len))
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            let (start, end) = (self.start, slice.len());
            self.get(slice).unwrap_or_else(|| super::slice_error_fail(slice, start, end))
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            // is_char_boundary checks that the index is in [0, .len()]
            if slice.is_char_boundary(self.start) {
                unsafe { self.get_unchecked_mut(slice) }
            } else {
                super::slice_error_fail(slice, self.start, slice.len())
            }
        }
    }

    /// Implements substring slicing with syntax `&self[begin ..= end]` or `&mut
    /// self[begin ..= end]`.
    ///
    /// Returns a slice of the given string from the byte range
    /// [`begin`, `end`]. Equivalent to `&self [begin .. end + 1]` or `&mut
    /// self[begin .. end + 1]`, except if `end` has the maximum value for
    /// `usize`.
    ///
    /// This operation is `O(1)`.
    ///
    /// # Panics
    ///
    /// Panics if `begin` does not point to the starting byte offset of
    /// a character (as defined by `is_char_boundary`), if `end` does not point
    /// to the ending byte offset of a character (`end + 1` is either a starting
    /// byte offset or equal to `len`), if `begin > end`, or if `end >= len`.
    #[stable(feature = "inclusive_range", since = "1.26.0")]
    impl SliceIndex<str> for ops::RangeInclusive<usize> {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            if *self.end() == usize::max_value() { None }
            else { (*self.start()..self.end()+1).get(slice) }
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            if *self.end() == usize::max_value() { None }
            else { (*self.start()..self.end()+1).get_mut(slice) }
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            (*self.start()..self.end()+1).get_unchecked(slice)
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            (*self.start()..self.end()+1).get_unchecked_mut(slice)
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            if *self.end() == usize::max_value() { str_index_overflow_fail(); }
            (*self.start()..self.end()+1).index(slice)
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            if *self.end() == usize::max_value() { str_index_overflow_fail(); }
            (*self.start()..self.end()+1).index_mut(slice)
        }
    }

    /// Implements substring slicing with syntax `&self[..= end]` or `&mut
    /// self[..= end]`.
    ///
    /// Returns a slice of the given string from the byte range [0, `end`].
    /// Equivalent to `&self [0 .. end + 1]`, except if `end` has the maximum
    /// value for `usize`.
    ///
    /// This operation is `O(1)`.
    ///
    /// # Panics
    ///
    /// Panics if `end` does not point to the ending byte offset of a character
    /// (`end + 1` is either a starting byte offset as defined by
    /// `is_char_boundary`, or equal to `len`), or if `end >= len`.
    #[stable(feature = "inclusive_range", since = "1.26.0")]
    impl SliceIndex<str> for ops::RangeToInclusive<usize> {
        type Output = str;
        #[inline]
        fn get(self, slice: &str) -> Option<&Self::Output> {
            if self.end == usize::max_value() { None }
            else { (..self.end+1).get(slice) }
        }
        #[inline]
        fn get_mut(self, slice: &mut str) -> Option<&mut Self::Output> {
            if self.end == usize::max_value() { None }
            else { (..self.end+1).get_mut(slice) }
        }
        #[inline]
        unsafe fn get_unchecked(self, slice: &str) -> &Self::Output {
            (..self.end+1).get_unchecked(slice)
        }
        #[inline]
        unsafe fn get_unchecked_mut(self, slice: &mut str) -> &mut Self::Output {
            (..self.end+1).get_unchecked_mut(slice)
        }
        #[inline]
        fn index(self, slice: &str) -> &Self::Output {
            if self.end == usize::max_value() { str_index_overflow_fail(); }
            (..self.end+1).index(slice)
        }
        #[inline]
        fn index_mut(self, slice: &mut str) -> &mut Self::Output {
            if self.end == usize::max_value() { str_index_overflow_fail(); }
            (..self.end+1).index_mut(slice)
        }
    }
}

// truncate `&str` to length at most equal to `max`
// return `true` if it were truncated, and the new str.
fn truncate_to_char_boundary(s: &str, mut max: usize) -> (bool, &str) {
    if max >= s.len() {
        (false, s)
    } else {
        while !s.is_char_boundary(max) {
            max -= 1;
        }
        (true, &s[..max])
    }
}

#[inline(never)]
#[cold]
fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
    const MAX_DISPLAY_LENGTH: usize = 256;
    let (truncated, s_trunc) = truncate_to_char_boundary(s, MAX_DISPLAY_LENGTH);
    let ellipsis = if truncated { "[...]" } else { "" };

    // 1. out of bounds
    if begin > s.len() || end > s.len() {
        let oob_index = if begin > s.len() { begin } else { end };
        panic!("byte index {} is out of bounds of `{}`{}", oob_index, s_trunc, ellipsis);
    }

    // 2. begin <= end
    assert!(begin <= end, "begin <= end ({} <= {}) when slicing `{}`{}",
            begin, end, s_trunc, ellipsis);

    // 3. character boundary
    let index = if !s.is_char_boundary(begin) { begin } else { end };
    // find the character
    let mut char_start = index;
    while !s.is_char_boundary(char_start) {
        char_start -= 1;
    }
    // `char_start` must be less than len and a char boundary
    let ch = s[char_start..].chars().next().unwrap();
    let char_range = char_start .. char_start + ch.len_utf8();
    panic!("byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
           index, ch, char_range, s_trunc, ellipsis);
}

#[lang = "str"]
#[cfg(not(test))]
impl str {
    /// Returns the length of `self`.
    ///
    /// This length is in bytes, not [`char`]s or graphemes. In other words,
    /// it may not be what a human considers the length of the string.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let len = "foo".len();
    /// assert_eq!(3, len);
    ///
    /// let len = "ƒoo".len(); // fancy f!
    /// assert_eq!(4, len);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    #[rustc_const_unstable(feature = "const_str_len")]
    pub const fn len(&self) -> usize {
        self.as_bytes().len()
    }

    /// Returns `true` if `self` has a length of zero bytes.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = "";
    /// assert!(s.is_empty());
    ///
    /// let s = "not empty";
    /// assert!(!s.is_empty());
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_str_len")]
    pub const fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Checks that `index`-th byte lies at the start and/or end of a
    /// UTF-8 code point sequence.
    ///
    /// The start and end of the string (when `index == self.len()`) are
    /// considered to be
    /// boundaries.
    ///
    /// Returns `false` if `index` is greater than `self.len()`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// assert!(s.is_char_boundary(0));
    /// // start of `老`
    /// assert!(s.is_char_boundary(6));
    /// assert!(s.is_char_boundary(s.len()));
    ///
    /// // second byte of `ö`
    /// assert!(!s.is_char_boundary(2));
    ///
    /// // third byte of `老`
    /// assert!(!s.is_char_boundary(8));
    /// ```
    #[stable(feature = "is_char_boundary", since = "1.9.0")]
    #[inline]
    pub fn is_char_boundary(&self, index: usize) -> bool {
        // 0 and len are always ok.
        // Test for 0 explicitly so that it can optimize out the check
        // easily and skip reading string data for that case.
        if index == 0 || index == self.len() { return true; }
        match self.as_bytes().get(index) {
            None => false,
            // This is bit magic equivalent to: b < 128 || b >= 192
            Some(&b) => (b as i8) >= -0x40,
        }
    }

    /// Converts a string slice to a byte slice. To convert the byte slice back
    /// into a string slice, use the [`str::from_utf8`] function.
    ///
    /// [`str::from_utf8`]: ./str/fn.from_utf8.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let bytes = "bors".as_bytes();
    /// assert_eq!(b"bors", bytes);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline(always)]
    #[rustc_const_unstable(feature="const_str_as_bytes")]
    pub const fn as_bytes(&self) -> &[u8] {
        #[repr(C)]
        union Slices<'a> {
            str: &'a str,
            slice: &'a [u8],
        }
        unsafe { Slices { str: self }.slice }
    }

    /// Converts a mutable string slice to a mutable byte slice. To convert the
    /// mutable byte slice back into a mutable string slice, use the
    /// [`str::from_utf8_mut`] function.
    ///
    /// [`str::from_utf8_mut`]: ./str/fn.from_utf8_mut.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let mut s = String::from("Hello");
    /// let bytes = unsafe { s.as_bytes_mut() };
    ///
    /// assert_eq!(b"Hello", bytes);
    /// ```
    ///
    /// Mutability:
    ///
    /// ```
    /// let mut s = String::from("🗻∈🌏");
    ///
    /// unsafe {
    ///     let bytes = s.as_bytes_mut();
    ///
    ///     bytes[0] = 0xF0;
    ///     bytes[1] = 0x9F;
    ///     bytes[2] = 0x8D;
    ///     bytes[3] = 0x94;
    /// }
    ///
    /// assert_eq!("🍔∈🌏", s);
    /// ```
    #[stable(feature = "str_mut_extras", since = "1.20.0")]
    #[inline(always)]
    pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
        &mut *(self as *mut str as *mut [u8])
    }

    /// Converts a string slice to a raw pointer.
    ///
    /// As string slices are a slice of bytes, the raw pointer points to a
    /// [`u8`]. This pointer will be pointing to the first byte of the string
    /// slice.
    ///
    /// The caller must ensure that the returned pointer is never written to.
    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
    ///
    /// [`u8`]: primitive.u8.html
    /// [`as_mut_ptr`]: #method.as_mut_ptr
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = "Hello";
    /// let ptr = s.as_ptr();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub const fn as_ptr(&self) -> *const u8 {
        self as *const str as *const u8
    }

    /// Converts a mutable string slice to a raw pointer.
    ///
    /// As string slices are a slice of bytes, the raw pointer points to a
    /// [`u8`]. This pointer will be pointing to the first byte of the string
    /// slice.
    ///
    /// It is your responsibility to make sure that the string slice only gets
    /// modified in a way that it remains valid UTF-8.
    ///
    /// [`u8`]: primitive.u8.html
    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut u8 {
        self as *mut str as *mut u8
    }

    /// Returns a subslice of `str`.
    ///
    /// This is the non-panicking alternative to indexing the `str`. Returns
    /// [`None`] whenever equivalent indexing operation would panic.
    ///
    /// [`None`]: option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// let v = String::from("🗻∈🌏");
    ///
    /// assert_eq!(Some("🗻"), v.get(0..4));
    ///
    /// // indices not on UTF-8 sequence boundaries
    /// assert!(v.get(1..).is_none());
    /// assert!(v.get(..8).is_none());
    ///
    /// // out of bounds
    /// assert!(v.get(..42).is_none());
    /// ```
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    #[inline]
    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
        i.get(self)
    }

    /// Returns a mutable subslice of `str`.
    ///
    /// This is the non-panicking alternative to indexing the `str`. Returns
    /// [`None`] whenever equivalent indexing operation would panic.
    ///
    /// [`None`]: option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = String::from("hello");
    /// // correct length
    /// assert!(v.get_mut(0..5).is_some());
    /// // out of bounds
    /// assert!(v.get_mut(..42).is_none());
    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
    ///
    /// assert_eq!("hello", v);
    /// {
    ///     let s = v.get_mut(0..2);
    ///     let s = s.map(|s| {
    ///         s.make_ascii_uppercase();
    ///         &*s
    ///     });
    ///     assert_eq!(Some("HE"), s);
    /// }
    /// assert_eq!("HEllo", v);
    /// ```
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    #[inline]
    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
        i.get_mut(self)
    }

    /// Returns a unchecked subslice of `str`.
    ///
    /// This is the unchecked alternative to indexing the `str`.
    ///
    /// # Safety
    ///
    /// Callers of this function are responsible that these preconditions are
    /// satisfied:
    ///
    /// * The starting index must come before the ending index;
    /// * Indexes must be within bounds of the original slice;
    /// * Indexes must lie on UTF-8 sequence boundaries.
    ///
    /// Failing that, the returned string slice may reference invalid memory or
    /// violate the invariants communicated by the `str` type.
    ///
    /// # Examples
    ///
    /// ```
    /// let v = "🗻∈🌏";
    /// unsafe {
    ///     assert_eq!("🗻", v.get_unchecked(0..4));
    ///     assert_eq!("∈", v.get_unchecked(4..7));
    ///     assert_eq!("🌏", v.get_unchecked(7..11));
    /// }
    /// ```
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    #[inline]
    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
        i.get_unchecked(self)
    }

    /// Returns a mutable, unchecked subslice of `str`.
    ///
    /// This is the unchecked alternative to indexing the `str`.
    ///
    /// # Safety
    ///
    /// Callers of this function are responsible that these preconditions are
    /// satisfied:
    ///
    /// * The starting index must come before the ending index;
    /// * Indexes must be within bounds of the original slice;
    /// * Indexes must lie on UTF-8 sequence boundaries.
    ///
    /// Failing that, the returned string slice may reference invalid memory or
    /// violate the invariants communicated by the `str` type.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = String::from("🗻∈🌏");
    /// unsafe {
    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
    /// }
    /// ```
    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
    #[inline]
    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
        i.get_unchecked_mut(self)
    }

    /// Creates a string slice from another string slice, bypassing safety
    /// checks.
    ///
    /// This is generally not recommended, use with caution! For a safe
    /// alternative see [`str`] and [`Index`].
    ///
    /// [`str`]: primitive.str.html
    /// [`Index`]: ops/trait.Index.html
    ///
    /// This new slice goes from `begin` to `end`, including `begin` but
    /// excluding `end`.
    ///
    /// To get a mutable string slice instead, see the
    /// [`slice_mut_unchecked`] method.
    ///
    /// [`slice_mut_unchecked`]: #method.slice_mut_unchecked
    ///
    /// # Safety
    ///
    /// Callers of this function are responsible that three preconditions are
    /// satisfied:
    ///
    /// * `begin` must come before `end`.
    /// * `begin` and `end` must be byte positions within the string slice.
    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// unsafe {
    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
    /// }
    ///
    /// let s = "Hello, world!";
    ///
    /// unsafe {
    ///     assert_eq!("world", s.slice_unchecked(7, 12));
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.29.0", reason = "use `get_unchecked(begin..end)` instead")]
    #[inline]
    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
        (begin..end).get_unchecked(self)
    }

    /// Creates a string slice from another string slice, bypassing safety
    /// checks.
    /// This is generally not recommended, use with caution! For a safe
    /// alternative see [`str`] and [`IndexMut`].
    ///
    /// [`str`]: primitive.str.html
    /// [`IndexMut`]: ops/trait.IndexMut.html
    ///
    /// This new slice goes from `begin` to `end`, including `begin` but
    /// excluding `end`.
    ///
    /// To get an immutable string slice instead, see the
    /// [`slice_unchecked`] method.
    ///
    /// [`slice_unchecked`]: #method.slice_unchecked
    ///
    /// # Safety
    ///
    /// Callers of this function are responsible that three preconditions are
    /// satisfied:
    ///
    /// * `begin` must come before `end`.
    /// * `begin` and `end` must be byte positions within the string slice.
    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
    #[stable(feature = "str_slice_mut", since = "1.5.0")]
    #[rustc_deprecated(since = "1.29.0", reason = "use `get_unchecked_mut(begin..end)` instead")]
    #[inline]
    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
        (begin..end).get_unchecked_mut(self)
    }

    /// Divide one string slice into two at an index.
    ///
    /// The argument, `mid`, should be a byte offset from the start of the
    /// string. It must also be on the boundary of a UTF-8 code point.
    ///
    /// The two slices returned go from the start of the string slice to `mid`,
    /// and from `mid` to the end of the string slice.
    ///
    /// To get mutable string slices instead, see the [`split_at_mut`]
    /// method.
    ///
    /// [`split_at_mut`]: #method.split_at_mut
    ///
    /// # Panics
    ///
    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
    /// beyond the last code point of the string slice.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = "Per Martin-Löf";
    ///
    /// let (first, last) = s.split_at(3);
    ///
    /// assert_eq!("Per", first);
    /// assert_eq!(" Martin-Löf", last);
    /// ```
    #[inline]
    #[stable(feature = "str_split_at", since = "1.4.0")]
    pub fn split_at(&self, mid: usize) -> (&str, &str) {
        // is_char_boundary checks that the index is in [0, .len()]
        if self.is_char_boundary(mid) {
            unsafe {
                (self.get_unchecked(0..mid),
                 self.get_unchecked(mid..self.len()))
            }
        } else {
            slice_error_fail(self, 0, mid)
        }
    }

    /// Divide one mutable string slice into two at an index.
    ///
    /// The argument, `mid`, should be a byte offset from the start of the
    /// string. It must also be on the boundary of a UTF-8 code point.
    ///
    /// The two slices returned go from the start of the string slice to `mid`,
    /// and from `mid` to the end of the string slice.
    ///
    /// To get immutable string slices instead, see the [`split_at`] method.
    ///
    /// [`split_at`]: #method.split_at
    ///
    /// # Panics
    ///
    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is
    /// beyond the last code point of the string slice.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let mut s = "Per Martin-Löf".to_string();
    /// {
    ///     let (first, last) = s.split_at_mut(3);
    ///     first.make_ascii_uppercase();
    ///     assert_eq!("PER", first);
    ///     assert_eq!(" Martin-Löf", last);
    /// }
    /// assert_eq!("PER Martin-Löf", s);
    /// ```
    #[inline]
    #[stable(feature = "str_split_at", since = "1.4.0")]
    pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
        // is_char_boundary checks that the index is in [0, .len()]
        if self.is_char_boundary(mid) {
            let len = self.len();
            let ptr = self.as_mut_ptr();
            unsafe {
                (from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
                 from_utf8_unchecked_mut(slice::from_raw_parts_mut(
                    ptr.add(mid),
                    len - mid
                 )))
            }
        } else {
            slice_error_fail(self, 0, mid)
        }
    }

    /// Returns an iterator over the [`char`]s of a string slice.
    ///
    /// As a string slice consists of valid UTF-8, we can iterate through a
    /// string slice by [`char`]. This method returns such an iterator.
    ///
    /// It's important to remember that [`char`] represents a Unicode Scalar
    /// Value, and may not match your idea of what a 'character' is. Iteration
    /// over grapheme clusters may be what you actually want.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let word = "goodbye";
    ///
    /// let count = word.chars().count();
    /// assert_eq!(7, count);
    ///
    /// let mut chars = word.chars();
    ///
    /// assert_eq!(Some('g'), chars.next());
    /// assert_eq!(Some('o'), chars.next());
    /// assert_eq!(Some('o'), chars.next());
    /// assert_eq!(Some('d'), chars.next());
    /// assert_eq!(Some('b'), chars.next());
    /// assert_eq!(Some('y'), chars.next());
    /// assert_eq!(Some('e'), chars.next());
    ///
    /// assert_eq!(None, chars.next());
    /// ```
    ///
    /// Remember, [`char`]s may not match your human intuition about characters:
    ///
    /// ```
    /// let y = "y̆";
    ///
    /// let mut chars = y.chars();
    ///
    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
    /// assert_eq!(Some('\u{0306}'), chars.next());
    ///
    /// assert_eq!(None, chars.next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn chars(&self) -> Chars<'_> {
        Chars{iter: self.as_bytes().iter()}
    }

    /// Returns an iterator over the [`char`]s of a string slice, and their
    /// positions.
    ///
    /// As a string slice consists of valid UTF-8, we can iterate through a
    /// string slice by [`char`]. This method returns an iterator of both
    /// these [`char`]s, as well as their byte positions.
    ///
    /// The iterator yields tuples. The position is first, the [`char`] is
    /// second.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let word = "goodbye";
    ///
    /// let count = word.char_indices().count();
    /// assert_eq!(7, count);
    ///
    /// let mut char_indices = word.char_indices();
    ///
    /// assert_eq!(Some((0, 'g')), char_indices.next());
    /// assert_eq!(Some((1, 'o')), char_indices.next());
    /// assert_eq!(Some((2, 'o')), char_indices.next());
    /// assert_eq!(Some((3, 'd')), char_indices.next());
    /// assert_eq!(Some((4, 'b')), char_indices.next());
    /// assert_eq!(Some((5, 'y')), char_indices.next());
    /// assert_eq!(Some((6, 'e')), char_indices.next());
    ///
    /// assert_eq!(None, char_indices.next());
    /// ```
    ///
    /// Remember, [`char`]s may not match your human intuition about characters:
    ///
    /// ```
    /// let yes = "y̆es";
    ///
    /// let mut char_indices = yes.char_indices();
    ///
    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
    ///
    /// // note the 3 here - the last character took up two bytes
    /// assert_eq!(Some((3, 'e')), char_indices.next());
    /// assert_eq!(Some((4, 's')), char_indices.next());
    ///
    /// assert_eq!(None, char_indices.next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn char_indices(&self) -> CharIndices<'_> {
        CharIndices { front_offset: 0, iter: self.chars() }
    }

    /// An iterator over the bytes of a string slice.
    ///
    /// As a string slice consists of a sequence of bytes, we can iterate
    /// through a string slice by byte. This method returns such an iterator.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let mut bytes = "bors".bytes();
    ///
    /// assert_eq!(Some(b'b'), bytes.next());
    /// assert_eq!(Some(b'o'), bytes.next());
    /// assert_eq!(Some(b'r'), bytes.next());
    /// assert_eq!(Some(b's'), bytes.next());
    ///
    /// assert_eq!(None, bytes.next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn bytes(&self) -> Bytes<'_> {
        Bytes(self.as_bytes().iter().cloned())
    }

    /// Splits a string slice by whitespace.
    ///
    /// The iterator returned will return string slices that are sub-slices of
    /// the original string slice, separated by any amount of whitespace.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
    /// instead, use [`split_ascii_whitespace`].
    ///
    /// [`split_ascii_whitespace`]: #method.split_ascii_whitespace
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let mut iter = "A few words".split_whitespace();
    ///
    /// assert_eq!(Some("A"), iter.next());
    /// assert_eq!(Some("few"), iter.next());
    /// assert_eq!(Some("words"), iter.next());
    ///
    /// assert_eq!(None, iter.next());
    /// ```
    ///
    /// All kinds of whitespace are considered:
    ///
    /// ```
    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
    /// assert_eq!(Some("Mary"), iter.next());
    /// assert_eq!(Some("had"), iter.next());
    /// assert_eq!(Some("a"), iter.next());
    /// assert_eq!(Some("little"), iter.next());
    /// assert_eq!(Some("lamb"), iter.next());
    ///
    /// assert_eq!(None, iter.next());
    /// ```
    #[stable(feature = "split_whitespace", since = "1.1.0")]
    #[inline]
    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
    }

    /// Splits a string slice by ASCII whitespace.
    ///
    /// The iterator returned will return string slices that are sub-slices of
    /// the original string slice, separated by any amount of ASCII whitespace.
    ///
    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
    ///
    /// [`split_whitespace`]: #method.split_whitespace
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let mut iter = "A few words".split_ascii_whitespace();
    ///
    /// assert_eq!(Some("A"), iter.next());
    /// assert_eq!(Some("few"), iter.next());
    /// assert_eq!(Some("words"), iter.next());
    ///
    /// assert_eq!(None, iter.next());
    /// ```
    ///
    /// All kinds of ASCII whitespace are considered:
    ///
    /// ```
    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
    /// assert_eq!(Some("Mary"), iter.next());
    /// assert_eq!(Some("had"), iter.next());
    /// assert_eq!(Some("a"), iter.next());
    /// assert_eq!(Some("little"), iter.next());
    /// assert_eq!(Some("lamb"), iter.next());
    ///
    /// assert_eq!(None, iter.next());
    /// ```
    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
    #[inline]
    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
        let inner = self
            .as_bytes()
            .split(IsAsciiWhitespace)
            .filter(BytesIsNotEmpty)
            .map(UnsafeBytesToStr);
        SplitAsciiWhitespace { inner }
    }

    /// An iterator over the lines of a string, as string slices.
    ///
    /// Lines are ended with either a newline (`\n`) or a carriage return with
    /// a line feed (`\r\n`).
    ///
    /// The final line ending is optional.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let text = "foo\r\nbar\n\nbaz\n";
    /// let mut lines = text.lines();
    ///
    /// assert_eq!(Some("foo"), lines.next());
    /// assert_eq!(Some("bar"), lines.next());
    /// assert_eq!(Some(""), lines.next());
    /// assert_eq!(Some("baz"), lines.next());
    ///
    /// assert_eq!(None, lines.next());
    /// ```
    ///
    /// The final line ending isn't required:
    ///
    /// ```
    /// let text = "foo\nbar\n\r\nbaz";
    /// let mut lines = text.lines();
    ///
    /// assert_eq!(Some("foo"), lines.next());
    /// assert_eq!(Some("bar"), lines.next());
    /// assert_eq!(Some(""), lines.next());
    /// assert_eq!(Some("baz"), lines.next());
    ///
    /// assert_eq!(None, lines.next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn lines(&self) -> Lines<'_> {
        Lines(self.split_terminator('\n').map(LinesAnyMap))
    }

    /// An iterator over the lines of a string.
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")]
    #[inline]
    #[allow(deprecated)]
    pub fn lines_any(&self) -> LinesAny<'_> {
        LinesAny(self.lines())
    }

    /// Returns an iterator of `u16` over the string encoded as UTF-16.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let text = "Zażółć gęślą jaźń";
    ///
    /// let utf8_len = text.len();
    /// let utf16_len = text.encode_utf16().count();
    ///
    /// assert!(utf16_len <= utf8_len);
    /// ```
    #[stable(feature = "encode_utf16", since = "1.8.0")]
    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
        EncodeUtf16 { chars: self.chars(), extra: 0 }
    }

    /// Returns `true` if the given pattern matches a sub-slice of
    /// this string slice.
    ///
    /// Returns `false` if it does not.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let bananas = "bananas";
    ///
    /// assert!(bananas.contains("nana"));
    /// assert!(!bananas.contains("apples"));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
        pat.is_contained_in(self)
    }

    /// Returns `true` if the given pattern matches a prefix of this
    /// string slice.
    ///
    /// Returns `false` if it does not.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let bananas = "bananas";
    ///
    /// assert!(bananas.starts_with("bana"));
    /// assert!(!bananas.starts_with("nana"));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
        pat.is_prefix_of(self)
    }

    /// Returns `true` if the given pattern matches a suffix of this
    /// string slice.
    ///
    /// Returns `false` if it does not.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let bananas = "bananas";
    ///
    /// assert!(bananas.ends_with("anas"));
    /// assert!(!bananas.ends_with("nana"));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn ends_with<'a, P>(&'a self, pat: P) -> bool
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        pat.is_suffix_of(self)
    }

    /// Returns the byte index of the first character of this string slice that
    /// matches the pattern.
    ///
    /// Returns [`None`] if the pattern doesn't match.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if
    /// a character matches.
    ///
    /// [`None`]: option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.find('L'), Some(0));
    /// assert_eq!(s.find('é'), Some(14));
    /// assert_eq!(s.find("Léopard"), Some(13));
    /// ```
    ///
    /// More complex patterns using point-free style and closures:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.find(char::is_whitespace), Some(5));
    /// assert_eq!(s.find(char::is_lowercase), Some(1));
    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
    /// ```
    ///
    /// Not finding the pattern:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// let x: &[_] = &['1', '2'];
    ///
    /// assert_eq!(s.find(x), None);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
        pat.into_searcher(self).next_match().map(|(i, _)| i)
    }

    /// Returns the byte index of the last character of this string slice that
    /// matches the pattern.
    ///
    /// Returns [`None`] if the pattern doesn't match.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if
    /// a character matches.
    ///
    /// [`None`]: option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.rfind('L'), Some(13));
    /// assert_eq!(s.rfind('é'), Some(14));
    /// ```
    ///
    /// More complex patterns with closures:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
    /// ```
    ///
    /// Not finding the pattern:
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// let x: &[_] = &['1', '2'];
    ///
    /// assert_eq!(s.rfind(x), None);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
    }

    /// An iterator over substrings of this string slice, separated by
    /// characters matched by a pattern.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
    /// allows a reverse search and forward/reverse search yields the same
    /// elements. This is true for, e.g., [`char`], but not for `&str`.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// If the pattern allows a reverse search but its results might differ
    /// from a forward search, the [`rsplit`] method can be used.
    ///
    /// [`rsplit`]: #method.rsplit
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
    ///
    /// let v: Vec<&str> = "".split('X').collect();
    /// assert_eq!(v, [""]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
    ///
    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
    ///
    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
    /// assert_eq!(v, ["abc", "def", "ghi"]);
    ///
    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
    /// assert_eq!(v, ["abc", "def", "ghi"]);
    /// ```
    ///
    /// If a string contains multiple contiguous separators, you will end up
    /// with empty strings in the output:
    ///
    /// ```
    /// let x = "||||a||b|c".to_string();
    /// let d: Vec<_> = x.split('|').collect();
    ///
    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
    /// ```
    ///
    /// Contiguous separators are separated by the empty string.
    ///
    /// ```
    /// let x = "(///)".to_string();
    /// let d: Vec<_> = x.split('/').collect();
    ///
    /// assert_eq!(d, &["(", "", "", ")"]);
    /// ```
    ///
    /// Separators at the start or end of a string are neighbored
    /// by empty strings.
    ///
    /// ```
    /// let d: Vec<_> = "010".split("0").collect();
    /// assert_eq!(d, &["", "1", ""]);
    /// ```
    ///
    /// When the empty string is used as a separator, it separates
    /// every character in the string, along with the beginning
    /// and end of the string.
    ///
    /// ```
    /// let f: Vec<_> = "rust".split("").collect();
    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
    /// ```
    ///
    /// Contiguous separators can lead to possibly surprising behavior
    /// when whitespace is used as the separator. This code is correct:
    ///
    /// ```
    /// let x = "    a  b c".to_string();
    /// let d: Vec<_> = x.split(' ').collect();
    ///
    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
    /// ```
    ///
    /// It does _not_ give you:
    ///
    /// ```,ignore
    /// assert_eq!(d, &["a", "b", "c"]);
    /// ```
    ///
    /// Use [`split_whitespace`] for this behavior.
    ///
    /// [`split_whitespace`]: #method.split_whitespace
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
        Split(SplitInternal {
            start: 0,
            end: self.len(),
            matcher: pat.into_searcher(self),
            allow_trailing_empty: true,
            finished: false,
        })
    }

    /// An iterator over substrings of the given string slice, separated by
    /// characters matched by a pattern and yielded in reverse order.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator requires that the pattern supports a reverse
    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
    /// search yields the same elements.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// For iterating from the front, the [`split`] method can be used.
    ///
    /// [`split`]: #method.split
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
    ///
    /// let v: Vec<&str> = "".rsplit('X').collect();
    /// assert_eq!(v, [""]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
    ///
    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
    /// assert_eq!(v, ["ghi", "def", "abc"]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        RSplit(self.split(pat).0)
    }

    /// An iterator over substrings of the given string slice, separated by
    /// characters matched by a pattern.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// Equivalent to [`split`], except that the trailing substring
    /// is skipped if empty.
    ///
    /// [`split`]: #method.split
    ///
    /// This method can be used for string data that is _terminated_,
    /// rather than _separated_ by a pattern.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
    /// allows a reverse search and forward/reverse search yields the same
    /// elements. This is true for, e.g., [`char`], but not for `&str`.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// If the pattern allows a reverse search but its results might differ
    /// from a forward search, the [`rsplit_terminator`] method can be used.
    ///
    /// [`rsplit_terminator`]: #method.rsplit_terminator
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
    /// assert_eq!(v, ["A", "B"]);
    ///
    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
    /// assert_eq!(v, ["A", "", "B", ""]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> {
        SplitTerminator(SplitInternal {
            allow_trailing_empty: false,
            ..self.split(pat).0
        })
    }

    /// An iterator over substrings of `self`, separated by characters
    /// matched by a pattern and yielded in reverse order.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    /// Additional libraries might provide more complex patterns like
    /// regular expressions.
    ///
    /// Equivalent to [`split`], except that the trailing substring is
    /// skipped if empty.
    ///
    /// [`split`]: #method.split
    ///
    /// This method can be used for string data that is _terminated_,
    /// rather than _separated_ by a pattern.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator requires that the pattern supports a
    /// reverse search, and it will be double ended if a forward/reverse
    /// search yields the same elements.
    ///
    /// For iterating from the front, the [`split_terminator`] method can be
    /// used.
    ///
    /// [`split_terminator`]: #method.split_terminator
    ///
    /// # Examples
    ///
    /// ```
    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
    /// assert_eq!(v, ["B", "A"]);
    ///
    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
    /// assert_eq!(v, ["", "B", "", "A"]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        RSplitTerminator(self.split_terminator(pat).0)
    }

    /// An iterator over substrings of the given string slice, separated by a
    /// pattern, restricted to returning at most `n` items.
    ///
    /// If `n` substrings are returned, the last substring (the `n`th substring)
    /// will contain the remainder of the string.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will not be double ended, because it is
    /// not efficient to support.
    ///
    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
    /// used.
    ///
    /// [`rsplitn`]: #method.rsplitn
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
    ///
    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
    /// assert_eq!(v, ["abcXdef"]);
    ///
    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
    /// assert_eq!(v, [""]);
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
    /// assert_eq!(v, ["abc", "defXghi"]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> {
        SplitN(SplitNInternal {
            iter: self.split(pat).0,
            count: n,
        })
    }

    /// An iterator over substrings of this string slice, separated by a
    /// pattern, starting from the end of the string, restricted to returning
    /// at most `n` items.
    ///
    /// If `n` substrings are returned, the last substring (the `n`th substring)
    /// will contain the remainder of the string.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will not be double ended, because it is not
    /// efficient to support.
    ///
    /// For splitting from the front, the [`splitn`] method can be used.
    ///
    /// [`splitn`]: #method.splitn
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
    ///
    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
    /// assert_eq!(v, ["leopard", "lion::tiger"]);
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
    /// assert_eq!(v, ["ghi", "abc1def"]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        RSplitN(self.splitn(n, pat).0)
    }

    /// An iterator over the disjoint matches of a pattern within the given string
    /// slice.
    ///
    /// The pattern can be any type that implements the Pattern trait. Notable
    /// examples are `&str`, [`char`], and closures that determines the split.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
    /// allows a reverse search and forward/reverse search yields the same
    /// elements. This is true for, e.g., [`char`], but not for `&str`.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// If the pattern allows a reverse search but its results might differ
    /// from a forward search, the [`rmatches`] method can be used.
    ///
    /// [`rmatches`]: #method.rmatches
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
    /// assert_eq!(v, ["abc", "abc", "abc"]);
    ///
    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
    /// assert_eq!(v, ["1", "2", "3"]);
    /// ```
    #[stable(feature = "str_matches", since = "1.2.0")]
    #[inline]
    pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> {
        Matches(MatchesInternal(pat.into_searcher(self)))
    }

    /// An iterator over the disjoint matches of a pattern within this string slice,
    /// yielded in reverse order.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if
    /// a character matches.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator requires that the pattern supports a reverse
    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
    /// search yields the same elements.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// For iterating from the front, the [`matches`] method can be used.
    ///
    /// [`matches`]: #method.matches
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
    /// assert_eq!(v, ["abc", "abc", "abc"]);
    ///
    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
    /// assert_eq!(v, ["3", "2", "1"]);
    /// ```
    #[stable(feature = "str_matches", since = "1.2.0")]
    #[inline]
    pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        RMatches(self.matches(pat).0)
    }

    /// An iterator over the disjoint matches of a pattern within this string
    /// slice as well as the index that the match starts at.
    ///
    /// For matches of `pat` within `self` that overlap, only the indices
    /// corresponding to the first match are returned.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines
    /// if a character matches.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
    /// allows a reverse search and forward/reverse search yields the same
    /// elements. This is true for, e.g., [`char`], but not for `&str`.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// If the pattern allows a reverse search but its results might differ
    /// from a forward search, the [`rmatch_indices`] method can be used.
    ///
    /// [`rmatch_indices`]: #method.rmatch_indices
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
    ///
    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
    ///
    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
    /// ```
    #[stable(feature = "str_match_indices", since = "1.5.0")]
    #[inline]
    pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> {
        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
    }

    /// An iterator over the disjoint matches of a pattern within `self`,
    /// yielded in reverse order along with the index of the match.
    ///
    /// For matches of `pat` within `self` that overlap, only the indices
    /// corresponding to the last match are returned.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if a
    /// character matches.
    ///
    /// # Iterator behavior
    ///
    /// The returned iterator requires that the pattern supports a reverse
    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
    /// search yields the same elements.
    ///
    /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html
    ///
    /// For iterating from the front, the [`match_indices`] method can be used.
    ///
    /// [`match_indices`]: #method.match_indices
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
    ///
    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
    ///
    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
    /// ```
    #[stable(feature = "str_match_indices", since = "1.5.0")]
    #[inline]
    pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        RMatchIndices(self.match_indices(pat).0)
    }

    /// Returns a string slice with leading and trailing whitespace removed.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = " Hello\tworld\t";
    ///
    /// assert_eq!("Hello\tworld", s.trim());
    /// ```
    #[must_use = "this returns the trimmed string as a slice, \
                  without modifying the original"]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn trim(&self) -> &str {
        self.trim_matches(|c: char| c.is_whitespace())
    }

    /// Returns a string slice with leading whitespace removed.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. `start` in this context means the first
    /// position of that byte string; for a left-to-right language like English or
    /// Russian, this will be left side, and for right-to-left languages like
    /// Arabic or Hebrew, this will be the right side.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = " Hello\tworld\t";
    /// assert_eq!("Hello\tworld\t", s.trim_start());
    /// ```
    ///
    /// Directionality:
    ///
    /// ```
    /// let s = "  English  ";
    /// assert!(Some('E') == s.trim_start().chars().next());
    ///
    /// let s = "  עברית  ";
    /// assert!(Some('ע') == s.trim_start().chars().next());
    /// ```
    #[must_use = "this returns the trimmed string as a new slice, \
                  without modifying the original"]
    #[stable(feature = "trim_direction", since = "1.30.0")]
    pub fn trim_start(&self) -> &str {
        self.trim_start_matches(|c: char| c.is_whitespace())
    }

    /// Returns a string slice with trailing whitespace removed.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. `end` in this context means the last
    /// position of that byte string; for a left-to-right language like English or
    /// Russian, this will be right side, and for right-to-left languages like
    /// Arabic or Hebrew, this will be the left side.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = " Hello\tworld\t";
    /// assert_eq!(" Hello\tworld", s.trim_end());
    /// ```
    ///
    /// Directionality:
    ///
    /// ```
    /// let s = "  English  ";
    /// assert!(Some('h') == s.trim_end().chars().rev().next());
    ///
    /// let s = "  עברית  ";
    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
    /// ```
    #[must_use = "this returns the trimmed string as a new slice, \
                  without modifying the original"]
    #[stable(feature = "trim_direction", since = "1.30.0")]
    pub fn trim_end(&self) -> &str {
        self.trim_end_matches(|c: char| c.is_whitespace())
    }

    /// Returns a string slice with leading whitespace removed.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. 'Left' in this context means the first
    /// position of that byte string; for a language like Arabic or Hebrew
    /// which are 'right to left' rather than 'left to right', this will be
    /// the _right_ side, not the left.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = " Hello\tworld\t";
    ///
    /// assert_eq!("Hello\tworld\t", s.trim_left());
    /// ```
    ///
    /// Directionality:
    ///
    /// ```
    /// let s = "  English";
    /// assert!(Some('E') == s.trim_left().chars().next());
    ///
    /// let s = "  עברית";
    /// assert!(Some('ע') == s.trim_left().chars().next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(
        since = "1.33.0",
        reason = "superseded by `trim_start`",
        suggestion = "trim_start",
    )]
    pub fn trim_left(&self) -> &str {
        self.trim_start()
    }

    /// Returns a string slice with trailing whitespace removed.
    ///
    /// 'Whitespace' is defined according to the terms of the Unicode Derived
    /// Core Property `White_Space`.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. 'Right' in this context means the last
    /// position of that byte string; for a language like Arabic or Hebrew
    /// which are 'right to left' rather than 'left to right', this will be
    /// the _left_ side, not the right.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let s = " Hello\tworld\t";
    ///
    /// assert_eq!(" Hello\tworld", s.trim_right());
    /// ```
    ///
    /// Directionality:
    ///
    /// ```
    /// let s = "English  ";
    /// assert!(Some('h') == s.trim_right().chars().rev().next());
    ///
    /// let s = "עברית  ";
    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(
        since = "1.33.0",
        reason = "superseded by `trim_end`",
        suggestion = "trim_end",
    )]
    pub fn trim_right(&self) -> &str {
        self.trim_end()
    }

    /// Returns a string slice with all prefixes and suffixes that match a
    /// pattern repeatedly removed.
    ///
    /// The pattern can be a [`char`] or a closure that determines if a
    /// character matches.
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
    ///
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
    /// ```
    #[must_use = "this returns the trimmed string as a new slice, \
                  without modifying the original"]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str
    where
        P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>,
    {
        let mut i = 0;
        let mut j = 0;
        let mut matcher = pat.into_searcher(self);
        if let Some((a, b)) = matcher.next_reject() {
            i = a;
            j = b; // Remember earliest known match, correct it below if
                   // last match is different
        }
        if let Some((_, b)) = matcher.next_reject_back() {
            j = b;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.get_unchecked(i..j)
        }
    }

    /// Returns a string slice with all prefixes that match a pattern
    /// repeatedly removed.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if
    /// a character matches.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. `start` in this context means the first
    /// position of that byte string; for a left-to-right language like English or
    /// Russian, this will be left side, and for right-to-left languages like
    /// Arabic or Hebrew, this will be the right side.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
    ///
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
    /// ```
    #[must_use = "this returns the trimmed string as a new slice, \
                  without modifying the original"]
    #[stable(feature = "trim_direction", since = "1.30.0")]
    pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
        let mut i = self.len();
        let mut matcher = pat.into_searcher(self);
        if let Some((a, _)) = matcher.next_reject() {
            i = a;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.get_unchecked(i..self.len())
        }
    }

    /// Returns a string slice with all suffixes that match a pattern
    /// repeatedly removed.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that
    /// determines if a character matches.
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. `end` in this context means the last
    /// position of that byte string; for a left-to-right language like English or
    /// Russian, this will be right side, and for right-to-left languages like
    /// Arabic or Hebrew, this will be the left side.
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
    ///
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
    /// ```
    #[must_use = "this returns the trimmed string as a new slice, \
                  without modifying the original"]
    #[stable(feature = "trim_direction", since = "1.30.0")]
    pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        let mut j = 0;
        let mut matcher = pat.into_searcher(self);
        if let Some((_, b)) = matcher.next_reject_back() {
            j = b;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.get_unchecked(0..j)
        }
    }

    /// Returns a string slice with all prefixes that match a pattern
    /// repeatedly removed.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that determines if
    /// a character matches.
    ///
    /// [`char`]: primitive.char.html
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. 'Left' in this context means the first
    /// position of that byte string; for a language like Arabic or Hebrew
    /// which are 'right to left' rather than 'left to right', this will be
    /// the _right_ side, not the left.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
    ///
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(
        since = "1.33.0",
        reason = "superseded by `trim_start_matches`",
        suggestion = "trim_start_matches",
    )]
    pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
        self.trim_start_matches(pat)
    }

    /// Returns a string slice with all suffixes that match a pattern
    /// repeatedly removed.
    ///
    /// The pattern can be a `&str`, [`char`], or a closure that
    /// determines if a character matches.
    ///
    /// [`char`]: primitive.char.html
    ///
    /// # Text directionality
    ///
    /// A string is a sequence of bytes. 'Right' in this context means the last
    /// position of that byte string; for a language like Arabic or Hebrew
    /// which are 'right to left' rather than 'left to right', this will be
    /// the _left_ side, not the right.
    ///
    /// # Examples
    ///
    /// Simple patterns:
    ///
    /// ```
    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
    ///
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
    /// ```
    ///
    /// A more complex pattern, using a closure:
    ///
    /// ```
    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(
        since = "1.33.0",
        reason = "superseded by `trim_end_matches`",
        suggestion = "trim_end_matches",
    )]
    pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str
    where
        P: Pattern<'a, Searcher: ReverseSearcher<'a>>,
    {
        self.trim_end_matches(pat)
    }

    /// Parses this string slice into another type.
    ///
    /// Because `parse` is so general, it can cause problems with type
    /// inference. As such, `parse` is one of the few times you'll see
    /// the syntax affectionately known as the 'turbofish': `::<>`. This
    /// helps the inference algorithm understand specifically which type
    /// you're trying to parse into.
    ///
    /// `parse` can parse any type that implements the [`FromStr`] trait.
    ///
    /// [`FromStr`]: str/trait.FromStr.html
    ///
    /// # Errors
    ///
    /// Will return [`Err`] if it's not possible to parse this string slice into
    /// the desired type.
    ///
    /// [`Err`]: str/trait.FromStr.html#associatedtype.Err
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```
    /// let four: u32 = "4".parse().unwrap();
    ///
    /// assert_eq!(4, four);
    /// ```
    ///
    /// Using the 'turbofish' instead of annotating `four`:
    ///
    /// ```
    /// let four = "4".parse::<u32>();
    ///
    /// assert_eq!(Ok(4), four);
    /// ```
    ///
    /// Failing to parse:
    ///
    /// ```
    /// let nope = "j".parse::<u32>();
    ///
    /// assert!(nope.is_err());
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
        FromStr::from_str(self)
    }

    /// Checks if all characters in this string are within the ASCII range.
    ///
    /// # Examples
    ///
    /// ```
    /// let ascii = "hello!\n";
    /// let non_ascii = "Grüße, Jürgen ❤";
    ///
    /// assert!(ascii.is_ascii());
    /// assert!(!non_ascii.is_ascii());
    /// ```
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn is_ascii(&self) -> bool {
        // We can treat each byte as character here: all multibyte characters
        // start with a byte that is not in the ascii range, so we will stop
        // there already.
        self.bytes().all(|b| b.is_ascii())
    }

    /// Checks that two strings are an ASCII case-insensitive match.
    ///
    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
    /// but without allocating and copying temporaries.
    ///
    /// # Examples
    ///
    /// ```
    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
    /// ```
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn eq_ignore_ascii_case(&self, other: &str) -> bool {
        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
    }

    /// Converts this string to its ASCII upper case equivalent in-place.
    ///
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To return a new uppercased value without modifying the existing one, use
    /// [`to_ascii_uppercase`].
    ///
    /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
    ///
    /// # Examples
    ///
    /// ```
    /// let mut s = String::from("Grüße, Jürgen ❤");
    ///
    /// s.make_ascii_uppercase();
    ///
    /// assert_eq!("GRüßE, JüRGEN ❤", s);
    /// ```
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    pub fn make_ascii_uppercase(&mut self) {
        let me = unsafe { self.as_bytes_mut() };
        me.make_ascii_uppercase()
    }

    /// Converts this string to its ASCII lower case equivalent in-place.
    ///
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To return a new lowercased value without modifying the existing one, use
    /// [`to_ascii_lowercase`].
    ///
    /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
    ///
    /// # Examples
    ///
    /// ```
    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
    ///
    /// s.make_ascii_lowercase();
    ///
    /// assert_eq!("grÜße, jÜrgen ❤", s);
    /// ```
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    pub fn make_ascii_lowercase(&mut self) {
        let me = unsafe { self.as_bytes_mut() };
        me.make_ascii_lowercase()
    }

    /// Return an iterator that escapes each char in `self` with [`char::escape_debug`].
    ///
    /// Note: only extended grapheme codepoints that begin the string will be
    /// escaped.
    ///
    /// [`char::escape_debug`]: ../std/primitive.char.html#method.escape_debug
    ///
    /// # Examples
    ///
    /// As an iterator:
    ///
    /// ```
    /// for c in "❤\n!".escape_debug() {
    ///     print!("{}", c);
    /// }
    /// println!();
    /// ```
    ///
    /// Using `println!` directly:
    ///
    /// ```
    /// println!("{}", "❤\n!".escape_debug());
    /// ```
    ///
    ///
    /// Both are equivalent to:
    ///
    /// ```
    /// println!("❤\\n!");
    /// ```
    ///
    /// Using `to_string`:
    ///
    /// ```
    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
    /// ```
    #[stable(feature = "str_escape", since = "1.34.0")]
    pub fn escape_debug(&self) -> EscapeDebug<'_> {
        let mut chars = self.chars();
        EscapeDebug {
            inner: chars.next()
                .map(|first| first.escape_debug_ext(true))
                .into_iter()
                .flatten()
                .chain(chars.flat_map(CharEscapeDebugContinue))
        }
    }

    /// Return an iterator that escapes each char in `self` with [`char::escape_default`].
    ///
    /// [`char::escape_default`]: ../std/primitive.char.html#method.escape_default
    ///
    /// # Examples
    ///
    /// As an iterator:
    ///
    /// ```
    /// for c in "❤\n!".escape_default() {
    ///     print!("{}", c);
    /// }
    /// println!();
    /// ```
    ///
    /// Using `println!` directly:
    ///
    /// ```
    /// println!("{}", "❤\n!".escape_default());
    /// ```
    ///
    ///
    /// Both are equivalent to:
    ///
    /// ```
    /// println!("\\u{{2764}}\\n!");
    /// ```
    ///
    /// Using `to_string`:
    ///
    /// ```
    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
    /// ```
    #[stable(feature = "str_escape", since = "1.34.0")]
    pub fn escape_default(&self) -> EscapeDefault<'_> {
        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
    }

    /// Return an iterator that escapes each char in `self` with [`char::escape_unicode`].
    ///
    /// [`char::escape_unicode`]: ../std/primitive.char.html#method.escape_unicode
    ///
    /// # Examples
    ///
    /// As an iterator:
    ///
    /// ```
    /// for c in "❤\n!".escape_unicode() {
    ///     print!("{}", c);
    /// }
    /// println!();
    /// ```
    ///
    /// Using `println!` directly:
    ///
    /// ```
    /// println!("{}", "❤\n!".escape_unicode());
    /// ```
    ///
    ///
    /// Both are equivalent to:
    ///
    /// ```
    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
    /// ```
    ///
    /// Using `to_string`:
    ///
    /// ```
    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
    /// ```
    #[stable(feature = "str_escape", since = "1.34.0")]
    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
    }
}

impl_fn_for_zst! {
    #[derive(Clone)]
    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
        c.escape_debug_ext(false)
    };

    #[derive(Clone)]
    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
        c.escape_unicode()
    };
    #[derive(Clone)]
    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
        c.escape_default()
    };
}

#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<[u8]> for str {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Default for &str {
    /// Creates an empty str
    fn default() -> Self { "" }
}

#[stable(feature = "default_mut_str", since = "1.28.0")]
impl Default for &mut str {
    /// Creates an empty mutable str
    fn default() -> Self { unsafe { from_utf8_unchecked_mut(&mut []) } }
}

/// An iterator over the non-whitespace substrings of a string,
/// separated by any amount of whitespace.
///
/// This struct is created by the [`split_whitespace`] method on [`str`].
/// See its documentation for more.
///
/// [`split_whitespace`]: ../../std/primitive.str.html#method.split_whitespace
/// [`str`]: ../../std/primitive.str.html
#[stable(feature = "split_whitespace", since = "1.1.0")]
#[derive(Clone, Debug)]
pub struct SplitWhitespace<'a> {
    inner: Filter<Split<'a, IsWhitespace>, IsNotEmpty>,
}

/// An iterator over the non-ASCII-whitespace substrings of a string,
/// separated by any amount of ASCII whitespace.
///
/// This struct is created by the [`split_ascii_whitespace`] method on [`str`].
/// See its documentation for more.
///
/// [`split_ascii_whitespace`]: ../../std/primitive.str.html#method.split_ascii_whitespace
/// [`str`]: ../../std/primitive.str.html
#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
#[derive(Clone, Debug)]
pub struct SplitAsciiWhitespace<'a> {
    inner: Map<Filter<SliceSplit<'a, u8, IsAsciiWhitespace>, BytesIsNotEmpty>, UnsafeBytesToStr>,
}

impl_fn_for_zst! {
    #[derive(Clone)]
    struct IsWhitespace impl Fn = |c: char| -> bool {
        c.is_whitespace()
    };

    #[derive(Clone)]
    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
        byte.is_ascii_whitespace()
    };

    #[derive(Clone)]
    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
        !s.is_empty()
    };

    #[derive(Clone)]
    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
        !s.is_empty()
    };

    #[derive(Clone)]
    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
        unsafe { from_utf8_unchecked(bytes) }
    };
}

#[stable(feature = "split_whitespace", since = "1.1.0")]
impl<'a> Iterator for SplitWhitespace<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        self.inner.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    #[inline]
    fn last(mut self) -> Option<&'a str> {
        self.next_back()
    }
}

#[stable(feature = "split_whitespace", since = "1.1.0")]
impl<'a> DoubleEndedIterator for SplitWhitespace<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        self.inner.next_back()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for SplitWhitespace<'_> {}

#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
impl<'a> Iterator for SplitAsciiWhitespace<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        self.inner.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    #[inline]
    fn last(mut self) -> Option<&'a str> {
        self.next_back()
    }
}

#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
impl<'a> DoubleEndedIterator for SplitAsciiWhitespace<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        self.inner.next_back()
    }
}

#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
impl FusedIterator for SplitAsciiWhitespace<'_> {}

/// An iterator of [`u16`] over the string encoded as UTF-16.
///
/// [`u16`]: ../../std/primitive.u16.html
///
/// This struct is created by the [`encode_utf16`] method on [`str`].
/// See its documentation for more.
///
/// [`encode_utf16`]: ../../std/primitive.str.html#method.encode_utf16
/// [`str`]: ../../std/primitive.str.html
#[derive(Clone)]
#[stable(feature = "encode_utf16", since = "1.8.0")]
pub struct EncodeUtf16<'a> {
    chars: Chars<'a>,
    extra: u16,
}

#[stable(feature = "collection_debug", since = "1.17.0")]
impl fmt::Debug for EncodeUtf16<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("EncodeUtf16 { .. }")
    }
}

#[stable(feature = "encode_utf16", since = "1.8.0")]
impl<'a> Iterator for EncodeUtf16<'a> {
    type Item = u16;

    #[inline]
    fn next(&mut self) -> Option<u16> {
        if self.extra != 0 {
            let tmp = self.extra;
            self.extra = 0;
            return Some(tmp);
        }

        let mut buf = [0; 2];
        self.chars.next().map(|ch| {
            let n = ch.encode_utf16(&mut buf).len();
            if n == 2 {
                self.extra = buf[1];
            }
            buf[0]
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (low, high) = self.chars.size_hint();
        // every char gets either one u16 or two u16,
        // so this iterator is between 1 or 2 times as
        // long as the underlying iterator.
        (low, high.and_then(|n| n.checked_mul(2)))
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl FusedIterator for EncodeUtf16<'_> {}

/// The return type of [`str::escape_debug`].
///
/// [`str::escape_debug`]: ../../std/primitive.str.html#method.escape_debug
#[stable(feature = "str_escape", since = "1.34.0")]
#[derive(Clone, Debug)]
pub struct EscapeDebug<'a> {
    inner: Chain<
        Flatten<option::IntoIter<char::EscapeDebug>>,
        FlatMap<Chars<'a>, char::EscapeDebug, CharEscapeDebugContinue>
    >,
}

/// The return type of [`str::escape_default`].
///
/// [`str::escape_default`]: ../../std/primitive.str.html#method.escape_default
#[stable(feature = "str_escape", since = "1.34.0")]
#[derive(Clone, Debug)]
pub struct EscapeDefault<'a> {
    inner: FlatMap<Chars<'a>, char::EscapeDefault, CharEscapeDefault>,
}

/// The return type of [`str::escape_unicode`].
///
/// [`str::escape_unicode`]: ../../std/primitive.str.html#method.escape_unicode
#[stable(feature = "str_escape", since = "1.34.0")]
#[derive(Clone, Debug)]
pub struct EscapeUnicode<'a> {
    inner: FlatMap<Chars<'a>, char::EscapeUnicode, CharEscapeUnicode>,
}

macro_rules! escape_types_impls {
    ($( $Name: ident ),+) => {$(
        #[stable(feature = "str_escape", since = "1.34.0")]
        impl<'a> fmt::Display for $Name<'a> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                self.clone().try_for_each(|c| f.write_char(c))
            }
        }

        #[stable(feature = "str_escape", since = "1.34.0")]
        impl<'a> Iterator for $Name<'a> {
            type Item = char;

            #[inline]
            fn next(&mut self) -> Option<char> { self.inner.next() }

            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }

            #[inline]
            fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R where
                Self: Sized, Fold: FnMut(Acc, Self::Item) -> R, R: Try<Ok=Acc>
            {
                self.inner.try_fold(init, fold)
            }

            #[inline]
            fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
                where Fold: FnMut(Acc, Self::Item) -> Acc,
            {
                self.inner.fold(init, fold)
            }
        }

        #[stable(feature = "str_escape", since = "1.34.0")]
        impl<'a> FusedIterator for $Name<'a> {}
    )+}
}

escape_types_impls!(EscapeDebug, EscapeDefault, EscapeUnicode);