1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
//! Optional values. //! //! Type [`Option`] represents an optional value: every [`Option`] //! is either [`Some`] and contains a value, or [`None`], and //! does not. [`Option`] types are very common in Rust code, as //! they have a number of uses: //! //! * Initial values //! * Return values for functions that are not defined //! over their entire input range (partial functions) //! * Return value for otherwise reporting simple errors, where [`None`] is //! returned on error //! * Optional struct fields //! * Struct fields that can be loaned or "taken" //! * Optional function arguments //! * Nullable pointers //! * Swapping things out of difficult situations //! //! [`Option`]s are commonly paired with pattern matching to query the presence //! of a value and take action, always accounting for the [`None`] case. //! //! ``` //! fn divide(numerator: f64, denominator: f64) -> Option<f64> { //! if denominator == 0.0 { //! None //! } else { //! Some(numerator / denominator) //! } //! } //! //! // The return value of the function is an option //! let result = divide(2.0, 3.0); //! //! // Pattern match to retrieve the value //! match result { //! // The division was valid //! Some(x) => println!("Result: {}", x), //! // The division was invalid //! None => println!("Cannot divide by 0"), //! } //! ``` //! // // FIXME: Show how `Option` is used in practice, with lots of methods // //! # Options and pointers ("nullable" pointers) //! //! Rust's pointer types must always point to a valid location; there are //! no "null" pointers. Instead, Rust has *optional* pointers, like //! the optional owned box, [`Option`]`<`[`Box<T>`]`>`. //! //! The following example uses [`Option`] to create an optional box of //! [`i32`]. Notice that in order to use the inner [`i32`] value first, the //! `check_optional` function needs to use pattern matching to //! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or //! not ([`None`]). //! //! ``` //! let optional = None; //! check_optional(optional); //! //! let optional = Some(Box::new(9000)); //! check_optional(optional); //! //! fn check_optional(optional: Option<Box<i32>>) { //! match optional { //! Some(ref p) => println!("has value {}", p), //! None => println!("has no value"), //! } //! } //! ``` //! //! This usage of [`Option`] to create safe nullable pointers is so //! common that Rust does special optimizations to make the //! representation of [`Option`]`<`[`Box<T>`]`>` a single pointer. Optional pointers //! in Rust are stored as efficiently as any other pointer type. //! //! # Examples //! //! Basic pattern matching on [`Option`]: //! //! ``` //! let msg = Some("howdy"); //! //! // Take a reference to the contained string //! if let Some(ref m) = msg { //! println!("{}", *m); //! } //! //! // Remove the contained string, destroying the Option //! let unwrapped_msg = msg.unwrap_or("default message"); //! ``` //! //! Initialize a result to [`None`] before a loop: //! //! ``` //! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) } //! //! // A list of data to search through. //! let all_the_big_things = [ //! Kingdom::Plant(250, "redwood"), //! Kingdom::Plant(230, "noble fir"), //! Kingdom::Plant(229, "sugar pine"), //! Kingdom::Animal(25, "blue whale"), //! Kingdom::Animal(19, "fin whale"), //! Kingdom::Animal(15, "north pacific right whale"), //! ]; //! //! // We're going to search for the name of the biggest animal, //! // but to start with we've just got `None`. //! let mut name_of_biggest_animal = None; //! let mut size_of_biggest_animal = 0; //! for big_thing in &all_the_big_things { //! match *big_thing { //! Kingdom::Animal(size, name) if size > size_of_biggest_animal => { //! // Now we've found the name of some big animal //! size_of_biggest_animal = size; //! name_of_biggest_animal = Some(name); //! } //! Kingdom::Animal(..) | Kingdom::Plant(..) => () //! } //! } //! //! match name_of_biggest_animal { //! Some(name) => println!("the biggest animal is {}", name), //! None => println!("there are no animals :("), //! } //! ``` //! //! [`Option`]: enum.Option.html //! [`Some`]: enum.Option.html#variant.Some //! [`None`]: enum.Option.html#variant.None //! [`Box<T>`]: ../../std/boxed/struct.Box.html //! [`i32`]: ../../std/primitive.i32.html #![stable(feature = "rust1", since = "1.0.0")] use crate::iter::{FromIterator, FusedIterator, TrustedLen}; use crate::{convert, fmt, hint, mem, ops::{self, Deref, DerefMut}}; use crate::pin::Pin; // Note that this is not a lang item per se, but it has a hidden dependency on // `Iterator`, which is one. The compiler assumes that the `next` method of // `Iterator` is an enumeration with one type parameter and two variants, // which basically means it must be `Option`. /// The `Option` type. See [the module level documentation](index.html) for more. #[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub enum Option<T> { /// No value #[stable(feature = "rust1", since = "1.0.0")] None, /// Some value `T` #[stable(feature = "rust1", since = "1.0.0")] Some(#[stable(feature = "rust1", since = "1.0.0")] T), } ///////////////////////////////////////////////////////////////////////////// // Type implementation ///////////////////////////////////////////////////////////////////////////// impl<T> Option<T> { ///////////////////////////////////////////////////////////////////////// // Querying the contained values ///////////////////////////////////////////////////////////////////////// /// Returns `true` if the option is a [`Some`] value. /// /// # Examples /// /// ``` /// let x: Option<u32> = Some(2); /// assert_eq!(x.is_some(), true); /// /// let x: Option<u32> = None; /// assert_eq!(x.is_some(), false); /// ``` /// /// [`Some`]: #variant.Some #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_some(&self) -> bool { match *self { Some(_) => true, None => false, } } /// Returns `true` if the option is a [`None`] value. /// /// # Examples /// /// ``` /// let x: Option<u32> = Some(2); /// assert_eq!(x.is_none(), false); /// /// let x: Option<u32> = None; /// assert_eq!(x.is_none(), true); /// ``` /// /// [`None`]: #variant.None #[must_use = "if you intended to assert that this doesn't have a value, consider \ `.and_then(|| panic!(\"`Option` had a value when expected `None`\"))` instead"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_none(&self) -> bool { !self.is_some() } /// Returns `true` if the option is a [`Some`] value containing the given value. /// /// # Examples /// /// ``` /// #![feature(option_result_contains)] /// /// let x: Option<u32> = Some(2); /// assert_eq!(x.contains(&2), true); /// /// let x: Option<u32> = Some(3); /// assert_eq!(x.contains(&2), false); /// /// let x: Option<u32> = None; /// assert_eq!(x.contains(&2), false); /// ``` #[must_use] #[inline] #[unstable(feature = "option_result_contains", issue = "62358")] pub fn contains<U>(&self, x: &U) -> bool where U: PartialEq<T> { match self { Some(y) => x == y, None => false, } } ///////////////////////////////////////////////////////////////////////// // Adapter for working with references ///////////////////////////////////////////////////////////////////////// /// Converts from `&Option<T>` to `Option<&T>`. /// /// # Examples /// /// Converts an `Option<`[`String`]`>` into an `Option<`[`usize`]`>`, preserving the original. /// The [`map`] method takes the `self` argument by value, consuming the original, /// so this technique uses `as_ref` to first take an `Option` to a reference /// to the value inside the original. /// /// [`map`]: enum.Option.html#method.map /// [`String`]: ../../std/string/struct.String.html /// [`usize`]: ../../std/primitive.usize.html /// /// ``` /// let text: Option<String> = Some("Hello, world!".to_string()); /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`, /// // then consume *that* with `map`, leaving `text` on the stack. /// let text_length: Option<usize> = text.as_ref().map(|s| s.len()); /// println!("still can print text: {:?}", text); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn as_ref(&self) -> Option<&T> { match *self { Some(ref x) => Some(x), None => None, } } /// Converts from `&mut Option<T>` to `Option<&mut T>`. /// /// # Examples /// /// ``` /// let mut x = Some(2); /// match x.as_mut() { /// Some(v) => *v = 42, /// None => {}, /// } /// assert_eq!(x, Some(42)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn as_mut(&mut self) -> Option<&mut T> { match *self { Some(ref mut x) => Some(x), None => None, } } /// Converts from [`Pin`]`<&Option<T>>` to `Option<`[`Pin`]`<&T>>`. /// /// [`Pin`]: ../pin/struct.Pin.html #[inline] #[stable(feature = "pin", since = "1.33.0")] pub fn as_pin_ref<'a>(self: Pin<&'a Option<T>>) -> Option<Pin<&'a T>> { unsafe { Pin::get_ref(self).as_ref().map(|x| Pin::new_unchecked(x)) } } /// Converts from [`Pin`]`<&mut Option<T>>` to `Option<`[`Pin`]`<&mut T>>`. /// /// [`Pin`]: ../pin/struct.Pin.html #[inline] #[stable(feature = "pin", since = "1.33.0")] pub fn as_pin_mut<'a>(self: Pin<&'a mut Option<T>>) -> Option<Pin<&'a mut T>> { unsafe { Pin::get_unchecked_mut(self).as_mut().map(|x| Pin::new_unchecked(x)) } } ///////////////////////////////////////////////////////////////////////// // Getting to contained values ///////////////////////////////////////////////////////////////////////// /// Unwraps an option, yielding the content of a [`Some`]. /// /// # Panics /// /// Panics if the value is a [`None`] with a custom panic message provided by /// `msg`. /// /// [`Some`]: #variant.Some /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let x = Some("value"); /// assert_eq!(x.expect("the world is ending"), "value"); /// ``` /// /// ```{.should_panic} /// let x: Option<&str> = None; /// x.expect("the world is ending"); // panics with `the world is ending` /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn expect(self, msg: &str) -> T { match self { Some(val) => val, None => expect_failed(msg), } } /// Moves the value `v` out of the `Option<T>` if it is [`Some(v)`]. /// /// In general, because this function may panic, its use is discouraged. /// Instead, prefer to use pattern matching and handle the [`None`] /// case explicitly. /// /// # Panics /// /// Panics if the self value equals [`None`]. /// /// [`Some(v)`]: #variant.Some /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let x = Some("air"); /// assert_eq!(x.unwrap(), "air"); /// ``` /// /// ```{.should_panic} /// let x: Option<&str> = None; /// assert_eq!(x.unwrap(), "air"); // fails /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap(self) -> T { match self { Some(val) => val, None => panic!("called `Option::unwrap()` on a `None` value"), } } /// Returns the contained value or a default. /// /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`unwrap_or_else`], /// which is lazily evaluated. /// /// [`unwrap_or_else`]: #method.unwrap_or_else /// /// # Examples /// /// ``` /// assert_eq!(Some("car").unwrap_or("bike"), "car"); /// assert_eq!(None.unwrap_or("bike"), "bike"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or(self, def: T) -> T { match self { Some(x) => x, None => def, } } /// Returns the contained value or computes it from a closure. /// /// # Examples /// /// ``` /// let k = 10; /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4); /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or_else<F: FnOnce() -> T>(self, f: F) -> T { match self { Some(x) => x, None => f(), } } ///////////////////////////////////////////////////////////////////////// // Transforming contained values ///////////////////////////////////////////////////////////////////////// /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value. /// /// # Examples /// /// Converts an `Option<`[`String`]`>` into an `Option<`[`usize`]`>`, consuming the original: /// /// [`String`]: ../../std/string/struct.String.html /// [`usize`]: ../../std/primitive.usize.html /// /// ``` /// let maybe_some_string = Some(String::from("Hello, World!")); /// // `Option::map` takes self *by value*, consuming `maybe_some_string` /// let maybe_some_len = maybe_some_string.map(|s| s.len()); /// /// assert_eq!(maybe_some_len, Some(13)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> { match self { Some(x) => Some(f(x)), None => None, } } /// Applies a function to the contained value (if any), /// or returns the provided default (if not). /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.map_or(42, |v| v.len()), 3); /// /// let x: Option<&str> = None; /// assert_eq!(x.map_or(42, |v| v.len()), 42); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U { match self { Some(t) => f(t), None => default, } } /// Applies a function to the contained value (if any), /// or computes a default (if not). /// /// # Examples /// /// ``` /// let k = 21; /// /// let x = Some("foo"); /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3); /// /// let x: Option<&str> = None; /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map_or_else<U, D: FnOnce() -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U { match self { Some(t) => f(t), None => default(), } } /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to /// [`Ok(v)`] and [`None`] to [`Err(err)`]. /// /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`ok_or_else`], which is /// lazily evaluated. /// /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok /// [`Err(err)`]: ../../std/result/enum.Result.html#variant.Err /// [`None`]: #variant.None /// [`Some(v)`]: #variant.Some /// [`ok_or_else`]: #method.ok_or_else /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.ok_or(0), Ok("foo")); /// /// let x: Option<&str> = None; /// assert_eq!(x.ok_or(0), Err(0)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn ok_or<E>(self, err: E) -> Result<T, E> { match self { Some(v) => Ok(v), None => Err(err), } } /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to /// [`Ok(v)`] and [`None`] to [`Err(err())`]. /// /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// [`Ok(v)`]: ../../std/result/enum.Result.html#variant.Ok /// [`Err(err())`]: ../../std/result/enum.Result.html#variant.Err /// [`None`]: #variant.None /// [`Some(v)`]: #variant.Some /// /// # Examples /// /// ``` /// let x = Some("foo"); /// assert_eq!(x.ok_or_else(|| 0), Ok("foo")); /// /// let x: Option<&str> = None; /// assert_eq!(x.ok_or_else(|| 0), Err(0)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn ok_or_else<E, F: FnOnce() -> E>(self, err: F) -> Result<T, E> { match self { Some(v) => Ok(v), None => Err(err()), } } ///////////////////////////////////////////////////////////////////////// // Iterator constructors ///////////////////////////////////////////////////////////////////////// /// Returns an iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let x = Some(4); /// assert_eq!(x.iter().next(), Some(&4)); /// /// let x: Option<u32> = None; /// assert_eq!(x.iter().next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, T> { Iter { inner: Item { opt: self.as_ref() } } } /// Returns a mutable iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let mut x = Some(4); /// match x.iter_mut().next() { /// Some(v) => *v = 42, /// None => {}, /// } /// assert_eq!(x, Some(42)); /// /// let mut x: Option<u32> = None; /// assert_eq!(x.iter_mut().next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, T> { IterMut { inner: Item { opt: self.as_mut() } } } ///////////////////////////////////////////////////////////////////////// // Boolean operations on the values, eager and lazy ///////////////////////////////////////////////////////////////////////// /// Returns [`None`] if the option is [`None`], otherwise returns `optb`. /// /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let x = Some(2); /// let y: Option<&str> = None; /// assert_eq!(x.and(y), None); /// /// let x: Option<u32> = None; /// let y = Some("foo"); /// assert_eq!(x.and(y), None); /// /// let x = Some(2); /// let y = Some("foo"); /// assert_eq!(x.and(y), Some("foo")); /// /// let x: Option<u32> = None; /// let y: Option<&str> = None; /// assert_eq!(x.and(y), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn and<U>(self, optb: Option<U>) -> Option<U> { match self { Some(_) => optb, None => None, } } /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the /// wrapped value and returns the result. /// /// Some languages call this operation flatmap. /// /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// fn sq(x: u32) -> Option<u32> { Some(x * x) } /// fn nope(_: u32) -> Option<u32> { None } /// /// assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16)); /// assert_eq!(Some(2).and_then(sq).and_then(nope), None); /// assert_eq!(Some(2).and_then(nope).and_then(sq), None); /// assert_eq!(None.and_then(sq).and_then(sq), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn and_then<U, F: FnOnce(T) -> Option<U>>(self, f: F) -> Option<U> { match self { Some(x) => f(x), None => None, } } /// Returns [`None`] if the option is [`None`], otherwise calls `predicate` /// with the wrapped value and returns: /// /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped /// value), and /// - [`None`] if `predicate` returns `false`. /// /// This function works similar to [`Iterator::filter()`]. You can imagine /// the `Option<T>` being an iterator over one or zero elements. `filter()` /// lets you decide which elements to keep. /// /// # Examples /// /// ```rust /// fn is_even(n: &i32) -> bool { /// n % 2 == 0 /// } /// /// assert_eq!(None.filter(is_even), None); /// assert_eq!(Some(3).filter(is_even), None); /// assert_eq!(Some(4).filter(is_even), Some(4)); /// ``` /// /// [`None`]: #variant.None /// [`Some(t)`]: #variant.Some /// [`Iterator::filter()`]: ../../std/iter/trait.Iterator.html#method.filter #[inline] #[stable(feature = "option_filter", since = "1.27.0")] pub fn filter<P: FnOnce(&T) -> bool>(self, predicate: P) -> Self { if let Some(x) = self { if predicate(&x) { return Some(x) } } None } /// Returns the option if it contains a value, otherwise returns `optb`. /// /// Arguments passed to `or` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`or_else`], which is /// lazily evaluated. /// /// [`or_else`]: #method.or_else /// /// # Examples /// /// ``` /// let x = Some(2); /// let y = None; /// assert_eq!(x.or(y), Some(2)); /// /// let x = None; /// let y = Some(100); /// assert_eq!(x.or(y), Some(100)); /// /// let x = Some(2); /// let y = Some(100); /// assert_eq!(x.or(y), Some(2)); /// /// let x: Option<u32> = None; /// let y = None; /// assert_eq!(x.or(y), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or(self, optb: Option<T>) -> Option<T> { match self { Some(_) => self, None => optb, } } /// Returns the option if it contains a value, otherwise calls `f` and /// returns the result. /// /// # Examples /// /// ``` /// fn nobody() -> Option<&'static str> { None } /// fn vikings() -> Option<&'static str> { Some("vikings") } /// /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians")); /// assert_eq!(None.or_else(vikings), Some("vikings")); /// assert_eq!(None.or_else(nobody), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or_else<F: FnOnce() -> Option<T>>(self, f: F) -> Option<T> { match self { Some(_) => self, None => f(), } } /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`]. /// /// [`Some`]: #variant.Some /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let x = Some(2); /// let y: Option<u32> = None; /// assert_eq!(x.xor(y), Some(2)); /// /// let x: Option<u32> = None; /// let y = Some(2); /// assert_eq!(x.xor(y), Some(2)); /// /// let x = Some(2); /// let y = Some(2); /// assert_eq!(x.xor(y), None); /// /// let x: Option<u32> = None; /// let y: Option<u32> = None; /// assert_eq!(x.xor(y), None); /// ``` #[inline] #[stable(feature = "option_xor", since = "1.37.0")] pub fn xor(self, optb: Option<T>) -> Option<T> { match (self, optb) { (Some(a), None) => Some(a), (None, Some(b)) => Some(b), _ => None, } } ///////////////////////////////////////////////////////////////////////// // Entry-like operations to insert if None and return a reference ///////////////////////////////////////////////////////////////////////// /// Inserts `v` into the option if it is [`None`], then /// returns a mutable reference to the contained value. /// /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let mut x = None; /// /// { /// let y: &mut u32 = x.get_or_insert(5); /// assert_eq!(y, &5); /// /// *y = 7; /// } /// /// assert_eq!(x, Some(7)); /// ``` #[inline] #[stable(feature = "option_entry", since = "1.20.0")] pub fn get_or_insert(&mut self, v: T) -> &mut T { self.get_or_insert_with(|| v) } /// Inserts a value computed from `f` into the option if it is [`None`], then /// returns a mutable reference to the contained value. /// /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let mut x = None; /// /// { /// let y: &mut u32 = x.get_or_insert_with(|| 5); /// assert_eq!(y, &5); /// /// *y = 7; /// } /// /// assert_eq!(x, Some(7)); /// ``` #[inline] #[stable(feature = "option_entry", since = "1.20.0")] pub fn get_or_insert_with<F: FnOnce() -> T>(&mut self, f: F) -> &mut T { match *self { None => *self = Some(f()), _ => (), } match *self { Some(ref mut v) => v, None => unsafe { hint::unreachable_unchecked() }, } } ///////////////////////////////////////////////////////////////////////// // Misc ///////////////////////////////////////////////////////////////////////// /// Takes the value out of the option, leaving a [`None`] in its place. /// /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// let mut x = Some(2); /// let y = x.take(); /// assert_eq!(x, None); /// assert_eq!(y, Some(2)); /// /// let mut x: Option<u32> = None; /// let y = x.take(); /// assert_eq!(x, None); /// assert_eq!(y, None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn take(&mut self) -> Option<T> { mem::take(self) } /// Replaces the actual value in the option by the value given in parameter, /// returning the old value if present, /// leaving a [`Some`] in its place without deinitializing either one. /// /// [`Some`]: #variant.Some /// /// # Examples /// /// ``` /// let mut x = Some(2); /// let old = x.replace(5); /// assert_eq!(x, Some(5)); /// assert_eq!(old, Some(2)); /// /// let mut x = None; /// let old = x.replace(3); /// assert_eq!(x, Some(3)); /// assert_eq!(old, None); /// ``` #[inline] #[stable(feature = "option_replace", since = "1.31.0")] pub fn replace(&mut self, value: T) -> Option<T> { mem::replace(self, Some(value)) } } impl<T: Copy> Option<&T> { /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the /// option. /// /// # Examples /// /// ``` /// let x = 12; /// let opt_x = Some(&x); /// assert_eq!(opt_x, Some(&12)); /// let copied = opt_x.copied(); /// assert_eq!(copied, Some(12)); /// ``` #[stable(feature = "copied", since = "1.35.0")] pub fn copied(self) -> Option<T> { self.map(|&t| t) } } impl<T: Copy> Option<&mut T> { /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the /// option. /// /// # Examples /// /// ``` /// let mut x = 12; /// let opt_x = Some(&mut x); /// assert_eq!(opt_x, Some(&mut 12)); /// let copied = opt_x.copied(); /// assert_eq!(copied, Some(12)); /// ``` #[stable(feature = "copied", since = "1.35.0")] pub fn copied(self) -> Option<T> { self.map(|&mut t| t) } } impl<T: Clone> Option<&T> { /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the /// option. /// /// # Examples /// /// ``` /// let x = 12; /// let opt_x = Some(&x); /// assert_eq!(opt_x, Some(&12)); /// let cloned = opt_x.cloned(); /// assert_eq!(cloned, Some(12)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn cloned(self) -> Option<T> { self.map(|t| t.clone()) } } impl<T: Clone> Option<&mut T> { /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the /// option. /// /// # Examples /// /// ``` /// let mut x = 12; /// let opt_x = Some(&mut x); /// assert_eq!(opt_x, Some(&mut 12)); /// let cloned = opt_x.cloned(); /// assert_eq!(cloned, Some(12)); /// ``` #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")] pub fn cloned(self) -> Option<T> { self.map(|t| t.clone()) } } impl<T: fmt::Debug> Option<T> { /// Unwraps an option, expecting [`None`] and returning nothing. /// /// # Panics /// /// Panics if the value is a [`Some`], with a panic message including the /// passed message, and the content of the [`Some`]. /// /// [`Some`]: #variant.Some /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// #![feature(option_expect_none)] /// /// use std::collections::HashMap; /// let mut squares = HashMap::new(); /// for i in -10..=10 { /// // This will not panic, since all keys are unique. /// squares.insert(i, i * i).expect_none("duplicate key"); /// } /// ``` /// /// ```{.should_panic} /// #![feature(option_expect_none)] /// /// use std::collections::HashMap; /// let mut sqrts = HashMap::new(); /// for i in -10..=10 { /// // This will panic, since both negative and positive `i` will /// // insert the same `i * i` key, returning the old `Some(i)`. /// sqrts.insert(i * i, i).expect_none("duplicate key"); /// } /// ``` #[inline] #[unstable(feature = "option_expect_none", reason = "newly added", issue = "62633")] pub fn expect_none(self, msg: &str) { if let Some(val) = self { expect_none_failed(msg, &val); } } /// Unwraps an option, expecting [`None`] and returning nothing. /// /// # Panics /// /// Panics if the value is a [`Some`], with a custom panic message provided /// by the [`Some`]'s value. /// /// [`Some(v)`]: #variant.Some /// [`None`]: #variant.None /// /// # Examples /// /// ``` /// #![feature(option_unwrap_none)] /// /// use std::collections::HashMap; /// let mut squares = HashMap::new(); /// for i in -10..=10 { /// // This will not panic, since all keys are unique. /// squares.insert(i, i * i).unwrap_none(); /// } /// ``` /// /// ```{.should_panic} /// #![feature(option_unwrap_none)] /// /// use std::collections::HashMap; /// let mut sqrts = HashMap::new(); /// for i in -10..=10 { /// // This will panic, since both negative and positive `i` will /// // insert the same `i * i` key, returning the old `Some(i)`. /// sqrts.insert(i * i, i).unwrap_none(); /// } /// ``` #[inline] #[unstable(feature = "option_unwrap_none", reason = "newly added", issue = "62633")] pub fn unwrap_none(self) { if let Some(val) = self { expect_none_failed("called `Option::unwrap_none()` on a `Some` value", &val); } } } impl<T: Default> Option<T> { /// Returns the contained value or a default /// /// Consumes the `self` argument then, if [`Some`], returns the contained /// value, otherwise if [`None`], returns the [default value] for that /// type. /// /// # Examples /// /// Converts a string to an integer, turning poorly-formed strings /// into 0 (the default value for integers). [`parse`] converts /// a string to any other type that implements [`FromStr`], returning /// [`None`] on error. /// /// ``` /// let good_year_from_input = "1909"; /// let bad_year_from_input = "190blarg"; /// let good_year = good_year_from_input.parse().ok().unwrap_or_default(); /// let bad_year = bad_year_from_input.parse().ok().unwrap_or_default(); /// /// assert_eq!(1909, good_year); /// assert_eq!(0, bad_year); /// ``` /// /// [`Some`]: #variant.Some /// [`None`]: #variant.None /// [default value]: ../default/trait.Default.html#tymethod.default /// [`parse`]: ../../std/primitive.str.html#method.parse /// [`FromStr`]: ../../std/str/trait.FromStr.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or_default(self) -> T { match self { Some(x) => x, None => Default::default(), } } } #[unstable(feature = "inner_deref", reason = "newly added", issue = "50264")] impl<T: Deref> Option<T> { /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`. /// /// Leaves the original Option in-place, creating a new one with a reference /// to the original one, additionally coercing the contents via [`Deref`]. /// /// [`Deref`]: ../../std/ops/trait.Deref.html /// /// # Examples /// /// ``` /// #![feature(inner_deref)] /// /// let x: Option<String> = Some("hey".to_owned()); /// assert_eq!(x.as_deref(), Some("hey")); /// /// let x: Option<String> = None; /// assert_eq!(x.as_deref(), None); /// ``` pub fn as_deref(&self) -> Option<&T::Target> { self.as_ref().map(|t| t.deref()) } } #[unstable(feature = "inner_deref", reason = "newly added", issue = "50264")] impl<T: DerefMut> Option<T> { /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`. /// /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to /// the inner type's `Deref::Target` type. /// /// # Examples /// /// ``` /// #![feature(inner_deref)] /// /// let mut x: Option<String> = Some("hey".to_owned()); /// assert_eq!(x.as_deref_mut().map(|x| { /// x.make_ascii_uppercase(); /// x /// }), Some("HEY".to_owned().as_mut_str())); /// ``` pub fn as_deref_mut(&mut self) -> Option<&mut T::Target> { self.as_mut().map(|t| t.deref_mut()) } } impl<T, E> Option<Result<T, E>> { /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`. /// /// [`None`] will be mapped to [`Ok`]`(`[`None`]`)`. /// [`Some`]`(`[`Ok`]`(_))` and [`Some`]`(`[`Err`]`(_))` will be mapped to /// [`Ok`]`(`[`Some`]`(_))` and [`Err`]`(_)`. /// /// [`None`]: #variant.None /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok /// [`Some`]: #variant.Some /// [`Err`]: ../../std/result/enum.Result.html#variant.Err /// /// # Examples /// /// ``` /// #[derive(Debug, Eq, PartialEq)] /// struct SomeErr; /// /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5)); /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5)); /// assert_eq!(x, y.transpose()); /// ``` #[inline] #[stable(feature = "transpose_result", since = "1.33.0")] pub fn transpose(self) -> Result<Option<T>, E> { match self { Some(Ok(x)) => Ok(Some(x)), Some(Err(e)) => Err(e), None => Ok(None), } } } // This is a separate function to reduce the code size of .expect() itself. #[inline(never)] #[cold] fn expect_failed(msg: &str) -> ! { panic!("{}", msg) } // This is a separate function to reduce the code size of .expect_none() itself. #[inline(never)] #[cold] fn expect_none_failed(msg: &str, value: &dyn fmt::Debug) -> ! { panic!("{}: {:?}", msg, value) } ///////////////////////////////////////////////////////////////////////////// // Trait implementations ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> Clone for Option<T> { #[inline] fn clone(&self) -> Self { match self { Some(x) => Some(x.clone()), None => None, } } #[inline] fn clone_from(&mut self, source: &Self) { match (self, source) { (Some(to), Some(from)) => to.clone_from(from), (to, from) => *to = from.clone(), } } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> Default for Option<T> { /// Returns [`None`][Option::None]. /// /// # Examples /// /// ``` /// let opt: Option<u32> = Option::default(); /// assert!(opt.is_none()); /// ``` #[inline] fn default() -> Option<T> { None } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> IntoIterator for Option<T> { type Item = T; type IntoIter = IntoIter<T>; /// Returns a consuming iterator over the possibly contained value. /// /// # Examples /// /// ``` /// let x = Some("string"); /// let v: Vec<&str> = x.into_iter().collect(); /// assert_eq!(v, ["string"]); /// /// let x = None; /// let v: Vec<&str> = x.into_iter().collect(); /// assert!(v.is_empty()); /// ``` #[inline] fn into_iter(self) -> IntoIter<T> { IntoIter { inner: Item { opt: self } } } } #[stable(since = "1.4.0", feature = "option_iter")] impl<'a, T> IntoIterator for &'a Option<T> { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(since = "1.4.0", feature = "option_iter")] impl<'a, T> IntoIterator for &'a mut Option<T> { type Item = &'a mut T; type IntoIter = IterMut<'a, T>; fn into_iter(self) -> IterMut<'a, T> { self.iter_mut() } } #[stable(since = "1.12.0", feature = "option_from")] impl<T> From<T> for Option<T> { fn from(val: T) -> Option<T> { Some(val) } } #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")] impl<'a, T> From<&'a Option<T>> for Option<&'a T> { fn from(o: &'a Option<T>) -> Option<&'a T> { o.as_ref() } } #[stable(feature = "option_ref_from_ref_option", since = "1.30.0")] impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> { fn from(o: &'a mut Option<T>) -> Option<&'a mut T> { o.as_mut() } } ///////////////////////////////////////////////////////////////////////////// // The Option Iterators ///////////////////////////////////////////////////////////////////////////// #[derive(Clone, Debug)] struct Item<A> { opt: Option<A> } impl<A> Iterator for Item<A> { type Item = A; #[inline] fn next(&mut self) -> Option<A> { self.opt.take() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { match self.opt { Some(_) => (1, Some(1)), None => (0, Some(0)), } } } impl<A> DoubleEndedIterator for Item<A> { #[inline] fn next_back(&mut self) -> Option<A> { self.opt.take() } } impl<A> ExactSizeIterator for Item<A> {} impl<A> FusedIterator for Item<A> {} unsafe impl<A> TrustedLen for Item<A> {} /// An iterator over a reference to the [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::iter`] function. /// /// [`Option`]: enum.Option.html /// [`Some`]: enum.Option.html#variant.Some /// [`Option::iter`]: enum.Option.html#method.iter #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug)] pub struct Iter<'a, A: 'a> { inner: Item<&'a A> } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for Iter<'a, A> { type Item = &'a A; #[inline] fn next(&mut self) -> Option<&'a A> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for Iter<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a A> { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<A> ExactSizeIterator for Iter<'_, A> {} #[stable(feature = "fused", since = "1.26.0")] impl<A> FusedIterator for Iter<'_, A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl<A> TrustedLen for Iter<'_, A> {} #[stable(feature = "rust1", since = "1.0.0")] impl<A> Clone for Iter<'_, A> { #[inline] fn clone(&self) -> Self { Iter { inner: self.inner.clone() } } } /// An iterator over a mutable reference to the [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::iter_mut`] function. /// /// [`Option`]: enum.Option.html /// [`Some`]: enum.Option.html#variant.Some /// [`Option::iter_mut`]: enum.Option.html#method.iter_mut #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug)] pub struct IterMut<'a, A: 'a> { inner: Item<&'a mut A> } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> Iterator for IterMut<'a, A> { type Item = &'a mut A; #[inline] fn next(&mut self) -> Option<&'a mut A> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, A> DoubleEndedIterator for IterMut<'a, A> { #[inline] fn next_back(&mut self) -> Option<&'a mut A> { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<A> ExactSizeIterator for IterMut<'_, A> {} #[stable(feature = "fused", since = "1.26.0")] impl<A> FusedIterator for IterMut<'_, A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl<A> TrustedLen for IterMut<'_, A> {} /// An iterator over the value in [`Some`] variant of an [`Option`]. /// /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. /// /// This `struct` is created by the [`Option::into_iter`] function. /// /// [`Option`]: enum.Option.html /// [`Some`]: enum.Option.html#variant.Some /// [`Option::into_iter`]: enum.Option.html#method.into_iter #[derive(Clone, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter<A> { inner: Item<A> } #[stable(feature = "rust1", since = "1.0.0")] impl<A> Iterator for IntoIter<A> { type Item = A; #[inline] fn next(&mut self) -> Option<A> { self.inner.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<A> DoubleEndedIterator for IntoIter<A> { #[inline] fn next_back(&mut self) -> Option<A> { self.inner.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<A> ExactSizeIterator for IntoIter<A> {} #[stable(feature = "fused", since = "1.26.0")] impl<A> FusedIterator for IntoIter<A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl<A> TrustedLen for IntoIter<A> {} ///////////////////////////////////////////////////////////////////////////// // FromIterator ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> { /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None], /// no further elements are taken, and the [`None`][Option::None] is /// returned. Should no [`None`][Option::None] occur, a container with the /// values of each [`Option`] is returned. /// /// # Examples /// /// Here is an example which increments every integer in a vector. /// We use the checked variant of `add` that returns `None` when the /// calculation would result in an overflow. /// /// ``` /// let items = vec![0_u16, 1, 2]; /// /// let res: Option<Vec<u16>> = items /// .iter() /// .map(|x| x.checked_add(1)) /// .collect(); /// /// assert_eq!(res, Some(vec![1, 2, 3])); /// ``` /// /// As you can see, this will return the expected, valid items. /// /// Here is another example that tries to subtract one from another list /// of integers, this time checking for underflow: /// /// ``` /// let items = vec![2_u16, 1, 0]; /// /// let res: Option<Vec<u16>> = items /// .iter() /// .map(|x| x.checked_sub(1)) /// .collect(); /// /// assert_eq!(res, None); /// ``` /// /// Since the last element is zero, it would underflow. Thus, the resulting /// value is `None`. /// /// Here is a variation on the previous example, showing that no /// further elements are taken from `iter` after the first `None`. /// /// ``` /// let items = vec![3_u16, 2, 1, 10]; /// /// let mut shared = 0; /// /// let res: Option<Vec<u16>> = items /// .iter() /// .map(|x| { shared += x; x.checked_sub(2) }) /// .collect(); /// /// assert_eq!(res, None); /// assert_eq!(shared, 6); /// ``` /// /// Since the third element caused an underflow, no further elements were taken, /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16. /// /// [`Iterator`]: ../iter/trait.Iterator.html #[inline] fn from_iter<I: IntoIterator<Item=Option<A>>>(iter: I) -> Option<V> { // FIXME(#11084): This could be replaced with Iterator::scan when this // performance bug is closed. iter.into_iter() .map(|x| x.ok_or(())) .collect::<Result<_, _>>() .ok() } } /// The error type that results from applying the try operator (`?`) to a `None` value. If you wish /// to allow `x?` (where `x` is an `Option<T>`) to be converted into your error type, you can /// implement `impl From<NoneError>` for `YourErrorType`. In that case, `x?` within a function that /// returns `Result<_, YourErrorType>` will translate a `None` value into an `Err` result. #[unstable(feature = "try_trait", issue = "42327")] #[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)] pub struct NoneError; #[unstable(feature = "try_trait", issue = "42327")] impl<T> ops::Try for Option<T> { type Ok = T; type Error = NoneError; #[inline] fn into_result(self) -> Result<T, NoneError> { self.ok_or(NoneError) } #[inline] fn from_ok(v: T) -> Self { Some(v) } #[inline] fn from_error(_: NoneError) -> Self { None } } impl<T> Option<Option<T>> { /// Converts from `Option<Option<T>>` to `Option<T>` /// /// # Examples /// Basic usage: /// ``` /// #![feature(option_flattening)] /// let x: Option<Option<u32>> = Some(Some(6)); /// assert_eq!(Some(6), x.flatten()); /// /// let x: Option<Option<u32>> = Some(None); /// assert_eq!(None, x.flatten()); /// /// let x: Option<Option<u32>> = None; /// assert_eq!(None, x.flatten()); /// ``` /// Flattening once only removes one level of nesting: /// ``` /// #![feature(option_flattening)] /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6))); /// assert_eq!(Some(Some(6)), x.flatten()); /// assert_eq!(Some(6), x.flatten().flatten()); /// ``` #[inline] #[unstable(feature = "option_flattening", issue = "60258")] pub fn flatten(self) -> Option<T> { self.and_then(convert::identity) } }