1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
use crate::ops::Try;
use crate::usize;

use super::super::{Iterator, DoubleEndedIterator, FusedIterator, TrustedLen};

/// An iterator that strings two iterators together.
///
/// This `struct` is created by the [`chain`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`chain`]: trait.Iterator.html#method.chain
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chain<A, B> {
    a: A,
    b: B,
    state: ChainState,
}
impl<A, B> Chain<A, B> {
    pub(in super::super) fn new(a: A, b: B) -> Chain<A, B> {
        Chain { a, b, state: ChainState::Both }
    }
}

// The iterator protocol specifies that iteration ends with the return value
// `None` from `.next()` (or `.next_back()`) and it is unspecified what
// further calls return. The chain adaptor must account for this since it uses
// two subiterators.
//
//  It uses three states:
//
//  - Both: `a` and `b` are remaining
//  - Front: `a` remaining
//  - Back: `b` remaining
//
//  The fourth state (neither iterator is remaining) only occurs after Chain has
//  returned None once, so we don't need to store this state.
#[derive(Clone, Debug)]
enum ChainState {
    // both front and back iterator are remaining
    Both,
    // only front is remaining
    Front,
    // only back is remaining
    Back,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> Iterator for Chain<A, B> where
    A: Iterator,
    B: Iterator<Item = A::Item>
{
    type Item = A::Item;

    #[inline]
    fn next(&mut self) -> Option<A::Item> {
        match self.state {
            ChainState::Both => match self.a.next() {
                elt @ Some(..) => elt,
                None => {
                    self.state = ChainState::Back;
                    self.b.next()
                }
            },
            ChainState::Front => self.a.next(),
            ChainState::Back => self.b.next(),
        }
    }

    #[inline]
    #[rustc_inherit_overflow_checks]
    fn count(self) -> usize {
        match self.state {
            ChainState::Both => self.a.count() + self.b.count(),
            ChainState::Front => self.a.count(),
            ChainState::Back => self.b.count(),
        }
    }

    fn try_fold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R where
        Self: Sized, F: FnMut(Acc, Self::Item) -> R, R: Try<Ok=Acc>
    {
        let mut accum = init;
        match self.state {
            ChainState::Both | ChainState::Front => {
                accum = self.a.try_fold(accum, &mut f)?;
                if let ChainState::Both = self.state {
                    self.state = ChainState::Back;
                }
            }
            _ => { }
        }
        if let ChainState::Back = self.state {
            accum = self.b.try_fold(accum, &mut f)?;
        }
        Try::from_ok(accum)
    }

    fn fold<Acc, F>(self, init: Acc, mut f: F) -> Acc
        where F: FnMut(Acc, Self::Item) -> Acc,
    {
        let mut accum = init;
        match self.state {
            ChainState::Both | ChainState::Front => {
                accum = self.a.fold(accum, &mut f);
            }
            _ => { }
        }
        match self.state {
            ChainState::Both | ChainState::Back => {
                accum = self.b.fold(accum, &mut f);
            }
            _ => { }
        }
        accum
    }

    #[inline]
    fn nth(&mut self, mut n: usize) -> Option<A::Item> {
        match self.state {
            ChainState::Both | ChainState::Front => {
                for x in self.a.by_ref() {
                    if n == 0 {
                        return Some(x)
                    }
                    n -= 1;
                }
                if let ChainState::Both = self.state {
                    self.state = ChainState::Back;
                }
            }
            ChainState::Back => {}
        }
        if let ChainState::Back = self.state {
            self.b.nth(n)
        } else {
            None
        }
    }

    #[inline]
    fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> where
        P: FnMut(&Self::Item) -> bool,
    {
        match self.state {
            ChainState::Both => match self.a.find(&mut predicate) {
                None => {
                    self.state = ChainState::Back;
                    self.b.find(predicate)
                }
                v => v
            },
            ChainState::Front => self.a.find(predicate),
            ChainState::Back => self.b.find(predicate),
        }
    }

    #[inline]
    fn last(self) -> Option<A::Item> {
        match self.state {
            ChainState::Both => {
                // Must exhaust a before b.
                let a_last = self.a.last();
                let b_last = self.b.last();
                b_last.or(a_last)
            },
            ChainState::Front => self.a.last(),
            ChainState::Back => self.b.last()
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.state {
            ChainState::Both => {
                let (a_lower, a_upper) = self.a.size_hint();
                let (b_lower, b_upper) = self.b.size_hint();

                let lower = a_lower.saturating_add(b_lower);

                let upper = match (a_upper, b_upper) {
                    (Some(x), Some(y)) => x.checked_add(y),
                    _ => None
                };

                (lower, upper)
            }
            ChainState::Front => self.a.size_hint(),
            ChainState::Back => self.b.size_hint(),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> DoubleEndedIterator for Chain<A, B> where
    A: DoubleEndedIterator,
    B: DoubleEndedIterator<Item=A::Item>,
{
    #[inline]
    fn next_back(&mut self) -> Option<A::Item> {
        match self.state {
            ChainState::Both => match self.b.next_back() {
                elt @ Some(..) => elt,
                None => {
                    self.state = ChainState::Front;
                    self.a.next_back()
                }
            },
            ChainState::Front => self.a.next_back(),
            ChainState::Back => self.b.next_back(),
        }
    }

    #[inline]
    fn nth_back(&mut self, mut n: usize) -> Option<A::Item> {
        match self.state {
            ChainState::Both | ChainState::Back => {
                for x in self.b.by_ref().rev() {
                    if n == 0 {
                        return Some(x)
                    }
                    n -= 1;
                }
                if let ChainState::Both = self.state {
                    self.state = ChainState::Front;
                }
            }
            ChainState::Front => {}
        }
        if let ChainState::Front = self.state {
            self.a.nth_back(n)
        } else {
            None
        }
    }

    fn try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R where
        Self: Sized, F: FnMut(Acc, Self::Item) -> R, R: Try<Ok=Acc>
    {
        let mut accum = init;
        match self.state {
            ChainState::Both | ChainState::Back => {
                accum = self.b.try_rfold(accum, &mut f)?;
                if let ChainState::Both = self.state {
                    self.state = ChainState::Front;
                }
            }
            _ => { }
        }
        if let ChainState::Front = self.state {
            accum = self.a.try_rfold(accum, &mut f)?;
        }
        Try::from_ok(accum)
    }

    fn rfold<Acc, F>(self, init: Acc, mut f: F) -> Acc
        where F: FnMut(Acc, Self::Item) -> Acc,
    {
        let mut accum = init;
        match self.state {
            ChainState::Both | ChainState::Back => {
                accum = self.b.rfold(accum, &mut f);
            }
            _ => { }
        }
        match self.state {
            ChainState::Both | ChainState::Front => {
                accum = self.a.rfold(accum, &mut f);
            }
            _ => { }
        }
        accum
    }

}

// Note: *both* must be fused to handle double-ended iterators.
#[stable(feature = "fused", since = "1.26.0")]
impl<A, B> FusedIterator for Chain<A, B>
    where A: FusedIterator,
          B: FusedIterator<Item=A::Item>,
{}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A, B> TrustedLen for Chain<A, B>
    where A: TrustedLen, B: TrustedLen<Item=A::Item>,
{}